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A computer is like a violin. You can imagine a novice trying first a
phonograph and then a violin. The latter, he says, sounds terrible.
That is the argument we have heard from our humanists and most of
our computer scientists. Computer programs are good, they say, for
particular purposes, but they aren't flexible. Neither is a violin, or a
typewriter, until you learn how to use it.
Marvin Minsky, “Why Programming Is a Good Medium for Expressing
Poorly-Understood and Sloppily-Formulated Ideas” in Design and
Planning, (1967)
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Foreword

Sometimes when you're writing a program, you get stuck. Maybe it's
because you realize you didn't appreciate some aspect of the problem,
but all too often it's because you made some decision early in the
program design process, about a choice of data structure or a way of
organizing the code, that has turned out to be too limiting, and also to
be difficult to undo.

This book is a master class in specific program organization
strategies that maintain flexibility. We all know by now that while it is
very easy to declare an array of fixed size to hold data to be processed,
such a design decision can turn out to be an unpleasant limitation that
may make it impossible to handle input lines longer than a certain
length, or to handle more than a fixed number of records. Many
security bugs, especially in the code for the Internet, have been
consequences of allocating a fixed-size memory buffer and then failing
to check whether the data to be processed would fit in the buffer.
Dynamically allocated storage (whether provided by a C-style malloc
library or by an automatic garbage collector), while more complicated,
is much more flexible and, as an extra benefit, less error-prone
(especially when the programming language always checks array
references to make sure the index is within bounds). That's just a very
simple example.

A number of early programming language designs in effect made a
design commitment to reflect the style of hardware organization called
the Harvard architecture: the code is here, the data is there, and the
job of the code is to massage the data. But an inflexible, arm's-length
separation between code and data turns out to be a significant
limitation on program organization. Well before the end of the
twentieth century, we learned from functional programming languages
(such as ML, Scheme, and Haskell) and from object-oriented
programming languages (such as Simula, Smalltalk, C++, and Java)



that there are advantages to being able to treat code as data, to treat
data as code, and to bundle smallish amounts of code and related data
together rather than organizing code and data separately as monolithic
chunks. The most flexible kind of data is a record structure that can
contain not only “primitive data items” such as numbers and
characters but also references to executable code, such as a function.
The most powerful kind of code constructs other code that has been
bundled with just the right amount of curated data; such a bundle is
not just a “function pointer” but a closure (in a functional language) or
an object (in an object-oriented language).

Jerry Sussman and Chris Hanson draw on their collective century of
programming experience to present a set of techniques, developed and
tested during decades of teaching at MIT, that further extend this
basic strategy for flexibility. Don't just use functions; use generic
functions, which are open-ended in a way that plain functions are not.
Keep functions small. Often the best thing for a function to return is
another function (that has been customized with curated data). Be
prepared to treat data as code, perhaps even to the extreme of creating
a new embedded programming language within your application if
necessary. (That is one view of how the Scheme language got its start:
the MacLisp dialect of Lisp did not support a completely general form
of function closure, so Jerry and I simply used MacLisp to code an
embedded dialect of Lisp that did support the kind of function closure
we needed.) Be prepared to replace a data structure with a more
general data structure that subsumes the original and extends its
capabilities. Use automatic constraint propagation to avoid a
premature commitment to which data items are inputs and which are
outputs.

This book is not a survey, or a tutorial—as I said before, it is a
master class. In each chapter, watch as two experts demonstrate an
advanced technique by incrementally developing a chunk of working
code, explaining the strategy as they go, occasionally pausing to point
out a pitfall or to remove a limitation. Then be prepared, when called
on, to demonstrate the technique yourself, by extending a data
structure or writing additional code—and then to use your imagination
and creativity to go beyond what they have demonstrated. The ideas in
this book are rich and deep; close attention to both the prose and the



code will be rewarded.
Guy L. Steele Jr.
Lexington, Massachusetts
August 2020



Preface

We have all spent too much time trying to deform an old piece of code
so that it could be used in a way that we didn't realize would be needed
when we wrote it. This is a terrible waste of time and effort.
Unfortunately, there are many pressures on us to write code that
works very well for a very specific purpose, with few reusable parts.
But we think that this is not necessary.

It is hard to build systems that have acceptable behavior over a
larger class of situations than was anticipated by their designers. The
best systems are evolvable: they can be adapted to new situations with
only minor modification. How can we design systems that are flexible
in this way?

It would be nice if all we had to do to add a new feature to a
program was to add some code, without changing the existing code
base. We can often do this by using certain organizing principles in the
construction of the code base and incorporating appropriate hooks at
that time.

Observations of biological systems tell us a great deal about how to
make flexible and evolvable systems. Techniques originally developed
in support of symbolic artificial intelligence can be viewed as ways of
enhancing flexibility and adaptability in programs and other
engineered systems. By contrast, common practice of computer
science actively discourages the construction of systems that are easily
modified for use in novel settings.

We have often programmed ourselves into corners and had to
expend great effort refactoring code to escape from those corners. We
have now accumulated enough experience to feel that we can identify,
isolate, and demonstrate strategies and techniques that we have found
to be effective for building large systems that can be adapted for
purposes that were not anticipated in the original design. In this book
we share some of the fruits of our over 100 years of programming
experience.



This book

This book was developed as the result of teaching computer
programming at MIT. We started this class many years ago, intending
to expose advanced undergraduate students and graduate students to
techniques and technologies that are useful in the construction of
programs that are central to artificial intelligence applications, such as
mathematical symbolic manipulation and rule-based systems. We
wanted the students to be able to build these systems flexibly, so that it
would be easier to combine such systems to make even more powerful
systems. We also wanted to teach students about dependencies—how
they can be tracked, and how they can be used for explanation and to
control backtracking.

Although the class was and is successful, it turned out that in the
beginning we did not have as much understanding of the material as
we originally believed. So we put a great deal of effort into sharpening
our tools and making our ideas more precise. We now realize that
these techniques are not just for artificial intelligence applications. We
think that anyone who is building complex systems, such as computer-
language compilers and integrated development environments, will
benefit from our experience. This book is built on the lectures and
problem sets that are now used in our class.



The contents

There is much more material in this book than can be covered in a
single-semester class. So each time we offer the class we pick and
choose what to present. Chapter 1 is an introduction to our
programming philosophy. Here we show flexibility in the grand
context of nature and of engineering. We try to make the point that
flexibility is as important an issue as efficiency and correctness. In
each subsequent chapter we introduce techniques and illustrate them
with sets of exercises. This is an important organizing principle for the
book.

In chapter 2 we explore some universally applicable ways of
building systems with room to grow. A powerful way to organize a
flexible system is to build it as an assembly of domain-specific
languages, each appropriate for easily expressing the construction of a
subsystem. Here we develop basic tools for the development of
domain-specific languages: we show how subsystems can be organized
around mix-and-match parts, how they can be flexibly combined with
combinators, how wrappers can be used to generalize parts, and how
we can often simplify a program by abstracting out a domain model.

In chapter 3 we introduce the extremely powerful but potentially
dangerous flexibility technique of predicate-dispatched generic
procedures. We start by generalizing arithmetic to deal with symbolic
algebraic expressions. We then show how such a generalization can be
made efficient by using type tags for data, and we demonstrate the
power of the technique with the design of a simple, but easy to
elaborate, adventure game.

In chapter 4 we introduce symbolic pattern matching, first to
enable term-rewriting systems, and later, with unification, to show
how type inference can easily be made to work. Here we encounter the
need for backtracking because of segment variables. Unification is the
first place where we see the power of representing and combining
partial-information structures. We end the chapter with extending the
idea to matching general graphs.

In chapter 5 we explore the power of interpretation and



compilation. We believe that programmers should know how to
escape the confines of whatever programming language they must use
by making an interpreter for a language that is more appropriate for
expressing the solution to the current problem. We also show how to
naturally incorporate backtracking search by implementing
nondeterministic amb in an interpreter/compiler system, and how to
use continuations.

In chapter 6 we show how to make systems of layered data and
layered procedures, where each data item can be annotated with a
variety of metadata. The processing of the underlying data is not
affected by the metadata, and the code for processing the underlying
data does not even know about or reference the metadata. However,
the metadata is processed by its own procedures, effectively in parallel
with the data. We illustrate this by attaching units to numerical
quantities and by showing how to carry dependency information,
giving the provenance of data, as derived from the primitive sources.

This is all brought together in chapter 7, where we introduce
propagation to escape from the expression-oriented paradigm of
computer languages. Here we have a wiring-diagram vision of
connecting modules together. This allows the flexible incorporation of
multiple sources of partial information. Using layered data to support
tracking of dependencies enables the implementation of dependency-
directed backtracking, which greatly reduces the search space in large
and complex systems.

This book can be used to make a variety of advanced classes. We use
the combinator idea introduced in chapter 2 and the generic
procedures introduced in chapter 3 in all subsequent chapters. But
patterns and pattern matching from chapter 4 and evaluators from
chapter 5 are not used in later chapters. The only material from
chapter 5 that is needed later is the introduction to amb in sections 5.4
and 5.4.1. The layering idea in chapter 6 is closely related to the idea of
generic procedures, but with a new twist. The use of layering to
implement dependency tracking, introduced as an example in chapter
6, becomes an essential ingredient in propagation (chapter 7), where
we use the dependencies to optimize backtracking search.



Scheme

The code in this book is written in Scheme, a mostly functional
language that is a variant of Lisp. Although Scheme is not a popular
language, or widely used in an industrial context, it is the right choice
for this book.1

The purpose of this book is the presentation and explanation of
programming ideas. The presentation of example code to elucidate
these ideas is shorter and simpler in Scheme than in more popular
languages, for many reasons. And some of the ideas would be nearly
impossible to demonstrate using other languages.

Languages other than those in the Lisp family require lots of
ceremony to say simple things. The only thing that makes our code
long-winded is that we tend to use long descriptive names for
computational objects.

The fact that Scheme syntax is extremely simple—it is just a
representation of the natural parse tree, requiring minimal parsing—
makes it easy to write programs that manipulate program texts, such
as interpreters, compilers, and algebraic expression manipulators.

It is important that Scheme is a permissive rather than a normative
language. It does not try to prevent a programmer from doing
something “stupid.” This allows us to play powerful games, like
dynamically modulating the meanings of arithmetic operators. We
would not be able to do this in a language that imposes more
restrictive rules.

Scheme allows assignment but encourages functional
programming. Scheme does not have static types, but it has very
strong dynamic typing that allows safe dynamic storage allocation and
garbage collection: a user program cannot manufacture a pointer or
access an arbitrary memory location. It is not that we think static types
are not a good idea. They certainly are useful for the early exorcism of
a large class of bugs. And Haskell-like type systems can be helpful in
thinking out strategies. But for this book the intellectual overhead of
static types would inhibit consideration of potentially dangerous



strategies of flexibility.
Also Scheme provides special features, such as reified continuations

and dynamic binding, that are not available in most other languages.
These features allow us to implement such powerful mechanisms as
nondeterministic amb in the native language (without a second layer of
interpretation).

 

1 We provide a short introduction to Scheme in Appendix B.
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1 
Flexibility in Nature and in Design

It is difficult to design a mechanism of general utility that does any
particular job very well, so most engineered systems are designed to
perform a specific job. General-purpose inventions, such as the screw
fastener, are rare and of great significance. The digital computer is a
breakthrough of this kind, because it is a universal machine that can
simulate any other information-processing machine.1 We write
software that configures our computers to effect this simulation for the
specific jobs that we need done.

We have been designing software to do particular jobs very well, as
an extension of past engineering practice. Each piece of software is
designed to do a relatively narrow job. As the problem to be solved
changes, the software must be changed. But small changes to the
problem do not often entail only small changes to the software.
Software is designed too tightly for there to be much flexibility. As a
consequence, systems cannot evolve gracefully. They are brittle and
must be replaced with entirely new designs as the problem domain
changes.2 This is slow and expensive.

Our engineered systems do not have to be brittle. The Internet has
been extended from a small system to one of global scale. Our cities
evolve organically, to accommodate new business models, life styles,
and means of transportation and communication. Indeed, from
observation of biological systems we see that it is possible to build
systems that can be adapted to changes in the environment, both
individually and as an evolutionary ensemble. Why is this not the way
we design and build most software? There are historical reasons, but
the main reason is that we don't know how to do this generally. At this
moment it is an accident if a system turns out to be robust in the face
of changes in requirements.



Additive programming
Our goal in this book is to investigate how to construct computational
systems so that they can be easily adapted to changing requirements.
One should not have to modify a working program. One should be able
to add to it to implement new functionality or to adjust old functions
for new requirements. We call this additive programming. We explore
techniques to add functionality to an existing program without
breaking it. Our techniques do not guarantee that the additions are
correct: the additions must themselves be debugged; but they should
not damage existing functionality accidentally.

Many of the techniques we explore in this book are not novel: some
of them date back to the early days of computing! They are also not a
comprehensive set, but simply some that we have found useful. Our
intention is not to promote the use of these techniques, but to
encourage a style of thinking that is focused on flexibility.

In order for additive programming to be possible, it is necessary to
minimize the assumptions about how a program works and how it will
be used. Assumptions made during the design and construction of a
program may reduce the possible future extensions of the program.
Instead of making such assumptions, we build our programs to make
just-in-time decisions based on the environment that the program is
running in. We will explore several techniques that support this kind
of design.

We can always combine programs to get the union of the behaviors
that each supports. But we want the whole to be more than the sum of
its parts; we want the parts of the combined system to cooperate to
give the system capabilities that no one part can provide by itself. But
there are tradeoffs here: the parts that we combine to make a system
must sharply separate concerns. If a part does one thing extremely
well, it is easier to reuse, and also easier to debug, than one that
combines several disparate capabilities. If we want to build additively,
it is important that the individual pieces combine with minimal
unintended interactions.

To facilitate additive programming, it is necessary that the parts we
build be as simple and general as we can make them. For example, a
part that accepts a wider range of inputs than is strictly necessary for



the problem at hand will have a wider applicability than one that
doesn't. And families of parts that are built around a standardized
interface specification can be mixed and matched to make a great
variety of systems. It is important to choose the right abstraction level
for our parts, by identifying the domain of discourse for the family and
then building the family for that domain. We start consideration of
these requirements in chapter 2.

For maximum flexibility the range of outputs of a part should be
quite small and well defined—much smaller than the range of
acceptable inputs for any part that might receive that output. This is
analogous to the static discipline in the digital abstraction that we
teach to students in introductory computer systems subjects [126].
The essence of the digital abstraction is that the outputs are always
better than the acceptable inputs of the next stage, so that noise is
suppressed.

In software engineering this principle is enshrined as “Postel's law”
in honor of Internet pioneer Jon Postel. In RFC760 [97], describing
the Internet protocol, he wrote: “The implementation of a protocol
must be robust. Each implementation must expect to interoperate
with others created by different individuals. While the goal of this
specification is to be explicit about the protocol, there is the possibility
of differing interpretations. In general, an implementation should be
conservative in its sending behavior, and liberal in its receiving
behavior.” This is usually summarized as “Be conservative in what you
do, be liberal in what you accept from others.”

Using more general parts than appear to be necessary builds a
degree of flexibility into the entire structure of our systems. Small
perturbations of the requirements can be tolerated, because every
component is built to accept perturbed (noisy) inputs.

A family of mix-and-match parts for a particular domain of
discourse is the foundation of a domain-specific language. Often the
best way to attack a family of hard problems is to make a language—a
set of primitives, means of combination, and means of abstraction—
that makes the solutions for those problems easy to express. So we
want to be able to erect appropriate domain-specific languages as
needed, and to combine such languages flexibly. We start thinking
about domain-specific languages in chapter 2. More powerfully, we



can implement such languages by direct evaluation. We expand on this
idea in chapter 5.

One strategy for enhancing flexibility, which should be familiar to
many programmers, is generic dispatch. We will explore this
extensively in chapter 3. Generic dispatch is often a useful way to
extend the applicability of a procedure by adding additional handlers
(methods) based on details of the arguments passed to the procedure.
By requiring handlers to respond to disjoint sets of arguments, we can
avoid breaking an existing program when a new handler is added.
However, unlike the generic dispatch in the typical object-oriented
programming context, our generic dispatch doesn't involve ideas like
classes, instances, and inheritance. These weaken the separation of
concerns by introducing spurious ontological commitments.

A quite different strategy, to be explored in chapter 6, is to layer
both data and procedures. This exploits the idea that data usually has
associated metadata that can be processed alongside the data. For
example, numerical data often has associated units. We will show how
providing the flexibility of adding layers after the fact can enhance a
program with new functionality, without any change to the original
program.

We can also build systems that combine multiple sources of partial
information to obtain more complete answers. This is most powerful
when the contributions come from independent sources of
information. In chapter 4 we will see how type inference is really a
matter of combining multiple sources of partial information. Locally
deducible clues about the type of a value, for example that a numerical
comparison requires numerical inputs and produces a boolean output,
can be combined with other local type constraints to produce nonlocal
type constraints.

In chapter 7 we will see a different way to combine partial
information. The distance to a nearby star can be estimated
geometrically, by parallax: measuring the angle by which the star
image shifts against the background sky as the Earth revolves around
the Sun. The distance to the star can also be estimated by
consideration of its brightness and its spectrum, using our
understanding of stellar structure and evolution. Such estimates can
be combined to get estimates that are more accurate than the



individual contributions.
A dual idea is the use of degeneracy: having multiple ways to

compute something, which can be combined or modulated as needed.
There are many valuable uses for degeneracy, including error
detection, performance management, and intrusion detection.
Importantly, degeneracy is also additive: each contributing part is self-
contained and can produce a result by itself. One interesting use of
degeneracy is to dynamically select from different implementations of
an algorithm depending on context. This avoids the need to make
assumptions about how the implementation will be used.

Design and construction for flexibility has definite costs. A
procedure that can take a greater variety of inputs than are necessary
for solving the current problem will have more code than absolutely
necessary and will take more thinking by the programmer than
absolutely necessary. The same goes for generic dispatch, layering, and
degeneracy, each of which involves constant overheads in memory
space, compute time, and/or programmer time. But the principal cost
of software is the time spent by programmers over the lifetime of the
product, including maintenance and adaptations that are needed for
changing requirements. Designs that minimize rewriting and
refactoring reduce the overall costs to the incremental additions rather
than complete rewrites. In other words, long-term costs are additive
rather than multiplicative.



1.1 Architecture of computation

A metaphor from architecture may be illuminating for the kind of
system that we contemplate. After understanding the nature of the site
to be built on and the requirements for the structure to be constructed,
the design process starts with a parti: an organizing principle for the
design.3 The parti is usually a sketch of the geometric arrangement of
parts. The parti may also embody abstract ideas, such as the division
into “served spaces” and “servant spaces,” as in the work of Louis
Isadore Kahn [130]. This decomposition is intended to divide the
architectural problem into parts by separating out infrastructural
support, such as the hallways, the restrooms, the mechanical rooms,
and the elevators, from the spaces to be supported, such as the
laboratories, classrooms, and offices in an academic building.

The parti is a model, but it is usually not a completely workable
structure. It must be elaborated with functional elements. How do we
fit in the staircases and elevators? Where do the HVAC ducts, the
plumbing, the electrical and communications distribution systems go?
How will we run a road to accommodate the delivery patterns of
service vehicles? These elaborations may cause modifications of the
parti, but the parti continues to serve as a scaffold around which these
elaborations are developed.

In programming, the parti is the abstract plan for the computations
to be performed. At small scale the parti may be an abstract algorithm
and data-structure description. In larger systems it is an abstract
composition of phases and parallel branches of a computation. In even
larger systems it is an allocation of capabilities to logical (or even
physical) locales.

Traditionally, programmmers have not been able to design as
architects. In very elaborate languages, such as Java, the parti is
tightly mixed with the elaborations. The “served spaces,” the
expressions that actually describe the desired behavior, are horribly
conflated with the “servant spaces,” such as the type declarations, the
class declarations, and the library imports and exports.4 More spare



languages, such as Lisp or Python, leave almost no room for the
servant spaces, and attempts to add declarations, even advisory ones,
are shunned because they impede the beauty of the exposed parti.

The architectural parti should be sufficiently complete to allow the
creation of models that can be used for analysis and criticism. The
skeleton plan of a program should be adequate for analysis and
criticism, but it should also be executable, for experiment and for
debugging. Just as an architect must fill in the parti to realize the
structure being designed, a programmer must elaborate the plan to
realize the computational system required. Layering (introduced in
chapter 6) is one way to build systems that allow this kind of
elaboration.



1.2 Smart parts for flexibility

Large systems are composed of many smaller components, each of
which contributes to the function of the whole either by directly
providing a part of that function or by cooperating with other
components to which it is interconnected in some pattern specified by
the system architect to establish a required function. A central
problem in system engineering is the establishment of interfaces that
allow the interconnection of components so that the functions of those
components can be combined to build compound functions.

For relatively simple systems the system architect may make formal
specifications for the various interfaces that must be satisfied by the
implementers of the components to be interconnected. Indeed, the
amazing success of electronics is based on the fact that it is feasible to
make such specifications and to meet them. High-frequency analog
equipment is interconnected with coaxial cable with standardized
impedance characteristics, and with standardized families of
connectors [4]. Both the function of a component and its interface
behavior can usually be specified with only a few parameters [60]. In
digital systems things are even clearer: there are static specifications of
the meanings of signals (the digital abstraction); there are dynamic
specifications of the timing of signals [126]; and there are mechanical
specifications of the form factors of components.5

Unfortunately, this kind of a priori specification becomes
progressively more difficult as the complexity of the system increases.
We could specify that a chess-playing program plays a legal game—
that it doesn't cheat—but how would one begin to specify that it plays a
good game of chess? Our software systems are built with large
numbers of custom-made highly specialized parts. The difficulty of
specifying software components is exacerbated by the individualized
nature of the components.

By contrast, biology constructs systems of enormous complexity
without very large specifications (considering the problem to be
solved!). Every cell in our bodies is a descendant of a single zygote. All



the cells have exactly the same genetic endowment (about 1 GByte of
ROM!). However, there are skin cells, neurons, muscle cells, etc. The
cells organize themselves to be discrete tissues, organs, and organ
systems. Indeed, the 1 GByte of ROM specifies how to build the
enormously complex machine (the human) from a huge number of
failure-prone parts. It specifies how to operate those basic parts and
how to configure them. It also specifies how to operate that compound
machine reliably, over a great range of hostile conditions, for a very
long life span, and how to defend that machine from others that would
love to eat it!

If our software components were simpler or more general they
would have simpler specifications. If the components were able to
adapt themselves to their surroundings, the precision of their
specification would be less important. Biological systems exploit both
of these strategies to build robust complex organisms. The difference
is that the biological cells are dynamically configurable, and able to
adapt themselves to their context. This is possible because the way a
cell differentiates and specializes depends on its environment. Our
software doesn't usually have this ability, and consequently we must
adapt each part by hand. How could biology possibly work?

Consider another example. We know that the various components
of the brain are hooked together with enormous bundles of neurons,
and there is nowhere near enough information in the genome to
specify that interconnect in any detail. It is likely that the various parts
of the brain learn to communicate with each other, based on the fact
that they share important experiences.6 So the interfaces must be self-
configuring, based on some rules of consistency, information from the
environment, and extensive exploratory behavior. This is pretty
expensive in boot-up time (it takes some years to configure a working
human), but it provides a kind of robustness that is not found in our
engineered entities to date.

One idea is that biological systems use contextual signals that are
informative rather than imperative.7 There is no master commander
saying what each part must do; instead the parts choose their roles
based on their surroundings. The behaviors of cells are not encoded in
the signals; they are separately expressed in the genome.
Combinations of signals just enable some behaviors and disable



others. This weak linkage allows variation in the implementation of
the behaviors that are enabled in various locales without modification
of the mechanism that defines the locales. So systems organized in this
way are evolvable in that they can accommodate adaptive variation in
some locales without changing the behavior of subsystems in other
locales.

Traditionally, software systems are built around an imperative
model, in which there is a hierarchy of control built into the structure.
The individual pieces are assumed to be dumb actors that do what they
are told. This makes adaptation very difficult, since all changes must
be reflected in the entire control structure. In social systems, we are
well aware of the problems with strict power structures and
centralized command. But our software follows this flawed model. We
can do better: making the parts smarter and individually responsible
streamlines adaptation, since only those parts directly affected by a
change need to respond.

Body plans
All vertebrates have essentially the same body plan, yet the variation
in details is enormous. Indeed, all animals with bilateral symmetry
share homeobox genes, such as the Hox complex. Such genes produce
an approximate coordinate system in the developing animal,
separating the developing animal into distinct locales.8 The locales
provide context for a cell to differentiate. And information derived
from contact with its neighbors produces more context that selects
particular behaviors from the possible behaviors that are available in
the cell's genetic program.9 Even the methods of construction are
shared—the morphogenesis of ducted glands, and organs such as
lungs and kidneys, is based on one embryological trick: the
invagination of epithelium into mesenchyme automagically10 produces
a branching maze of blind-end tubules surrounded by differentiating
mesenchyme.11

Good engineering has a similar flavor, in that good designs are
modular. Consider the design of a radio receiver. There are several
grand “body plans” that have been discovered, such as direct
conversion, TRF (tuned radio frequency), and superheterodyne. Each



has a sequence of locales, defined by the engineering equivalent of a
Hox complex, that patterns the system from the antenna to the output
transducer. For example, a superheterodyne receiver (figure 1.1) has a
standard set of locales (from nose to tail).

Figure 1.1 The superheterodyne plan, invented by Major Edwin Armstrong in 1918, is still the
dominant “body plan” for radio receivers.

The modules identified in this plan each decompose into yet other
modules, such as oscillators, mixers, filters, and amplifiers, and so on
down to the individual electronic components. Additionally, each
module can be instantiated in many possible ways: the RF section may
be just a filter, or it may be an elaborate filter and amplifier
combination. Indeed, in an analog television receiver part of the
output of the mixer is processed as AM by the video chain and another
part is processed as FM to produce the audio. And some sections, such
as the converter, may be recursively elaborated (as if parts of the Hox
complex were duplicated!) to obtain multiple-conversion receivers.

In biological systems this structure of compartments is also
supported at higher levels of organization. There are tissues that are
specialized to become boundaries of compartments, and tubes that
interconnect them. Organs are bounded by such tissues and
interconnected by such tubes, and the entire structure is packaged to
fit into coeloms, which are cavities lined with specialized tissues in
higher organisms.

Similar techniques can be used in software. A body plan is just a



wrapper that combines partially specified components. This is a kind
of combinator: a thing that combines subparts together into a larger
part. It is possible to create combinator languages, in which the
components and the composite all have the same interface
specification. In a combinator language, it is possible to build
arbitrarily large composites from small numbers of mix-and-match
components. The self-similar structures make combination easy. In
chapter 2 we will begin to build combinator-based software, and this
theme will run through all of the rest of the book.

Something similar can be done with domain-specific languages. By
making an abstraction of the domain, we can use the same domain-
independent code in different domains. For example, numerical
integrators are useful in any domain that has numerical aspects,
regardless of the domain. Another example is pattern matching in
chapter 4, which can be applied to a wide variety of domains.

Biological mechanisms are universal in that each component can, in
principle, act as any other component. Analog electronics components
are not universal in that sense. They do not adapt themselves to their
surroundings based on local signaling. But there are universal
electrical building blocks (a programmable computer with analog
interfaces, for example!).12 For low-frequency applications one can
build analog systems from such blocks. If each block had all of the
code required to be any block in the system, but was specialized by
interactions with its neighbors, and if there were extra unspecialized
“stem cells” in the package, then we could imagine building self-
reconfiguring and self-repairing analog systems. But for now we still
design and build these parts individually.

In programming we do have the idea of a universal element: the
evaluator. An evaluator takes a description of some computation to be
performed and inputs to that computation. It produces the outputs
that would arise if we passed the inputs to a bespoke component that
implemented the desired computation. In computation we have a
chance to pursue the powerfully flexible strategy of embryonic
development. We will elaborate on the use of evaluator technology in
chapter 5.



1.3 Redundancy and degeneracy

Biological systems have evolved a great deal of robustness. One of the
characteristics of biological systems is that they are redundant. Organs
such as the liver and kidney are highly redundant: there is vastly more
capacity than is necessary to do the job, so a person missing a kidney
or part of a liver suffers no obvious incapacity. Biological systems are
also highly degenerate: there are usually many ways to satisfy a given
requirement.13 For example, if a finger is damaged, there are ways that
the other fingers may be configured to pick up an object. We can
obtain the necessary energy for life from a great variety of sources: we
can metabolize carbohydrates, fats, and proteins, even though the
mechanisms for digestion and for extraction of energy from each of
these sources is quite distinct.

The genetic code is itself degenerate, in that the map from codons
(triples of nucleotides) to amino acids is not one-to-one: there are 64
possible codons to specify only about 20 possible amino acids [86, 54].
As a consequence, many point mutations (changes of a single
nucleotide) do not change the protein specified by a coding region.
Also, quite often the substitution of one amino acid with a similar one
does not impair the biological activity of a protein. These degeneracies
provide ways that variation can accumulate without obvious
phenotypic consequences. Furthermore, if a gene is duplicated (not an
uncommon occurrence), the copies may diverge silently, allowing the
development of variants that may become valuable in the future,
without interfering with current viability. In addition, the copies can
be placed under different transcriptional controls.

Degeneracy is a product of evolution, and it certainly enables
evolution. Probably degeneracy is itself selected for, because only
creatures that have significant amounts of degeneracy are sufficiently
adaptable to allow survival as the environment changes.14 For
example, suppose we have some creature (or engineered system) that
is degenerate in that there are several very different independent
mechanisms to achieve some essential function. If the environment



changes (or the requirements change) so that one of the ways of
achieving an essential function becomes untenable, the creature will
continue to live and reproduce (the system will continue to satisfy its
specifications). But the subsystem that has become inoperative is now
open to mutation (or repair), without impinging on the viability (or
current operation) of the system as a whole.

The theoretical structure of physics is deeply degenerate. For
example, problems in classical mechanics can be approached in
multiple ways. There is the Newtonian formulation of vectoral
mechanics and the Lagrangian and Hamiltonian formulations of
variational mechanics. If both vectoral mechanics and either form of
variational mechanics are applicable, they produce equivalent
equations of motion. For analysis of systems with dissipative forces
like friction, vectoral mechanics is effective; variational methods are
not well suited for that kind of system. Lagrangian mechanics is far
better than vectoral mechanics for dealing with systems with rigid
constraints, and Hamiltonian mechanics provides the power of
canonical transformations to help understand systems using the
structure of phase space. Both the Lagrangian and Hamiltonian
formulations help us with deep insights into the role of symmetries
and conserved quantities. The fact that there are three overlapping
ways of describing a mechanical system, which agree when they are all
applicable, gives us multiple avenues of attack on any problem [121].

Engineered systems may incorporate some redundancy, in critical
systems where the cost of failure is extreme. But they almost never
intentionally incorporate degeneracy of the kind found in biological
systems, except as a side effect of designs that are not optimal.15

Degeneracy can add value to our systems: as with redundancy, we
can cross-check the answers of degenerate computations to improve
robustness. But degenerate computations are not just redundant but
different from one another, meaning that a bug in one is unlikely to
affect the others. This is a positive characteristic not only for reliability
but also for security, as a successful attack must compromise multiple
degenerate parts.

When degenerate parts generate partial information, the result of
their combination can be better than any individual result. Some
navigation systems use this idea to combine several positional



estimates to generate a highly accurate result. We will explore the idea
of combining partial information in chapter 7.



1.4 Exploratory behavior

One of the most powerful mechanisms of robustness in biological
systems is exploratory behavior.16 The idea is that the desired outcome
is produced by a generate-and-test mechanism (see figure 1.2). This
organization allows the generator mechanism to be general and to
work independently of the testing mechanism that accepts or rejects a
particular generated result.

Figure 1.2 Exploratory behavior can be accomplished in two ways. In one way a generator
proposes an action (or a result), which may be explicitly rejected by a tester. The generator
then must propose an alternative. Another way is that the generator produces all of the
alternatives, without feedback, and a filter selects one or more that are acceptable.

For example, an important component of the rigid skeleton that
supports the shape of a cell is an array of microtubules. Each
microtubule is made up of protein units that aggregate to form it.
Microtubules are continually created and destroyed in a living cell;
they are created growing out in all directions. However, only
microtubules that encounter a kinetochore or other stabilizer in the
cell membrane are stable, thus supporting the shape determined by
the positions of the stabilizers [71]. So the mechanism for growing and
maintaining a shape is relatively independent of the mechanism for
specifying the shape. This mechanism partly determines the shapes of



many types of cells in a complex organism, and it is almost universal
in animals.

Exploratory behavior appears at all levels of detail in biological
systems. The nervous system of a growing embryo produces a vastly
larger number of neurons than will persist in the adult. Those neurons
that find appropriate targets in other neurons, sensory organs, or
muscles will survive, and those that find no targets kill themselves.
The hand is fashioned by production of a pad and deletion, by
apoptosis (programmed cell death), of the material between the
fingers [131]. Our bones are continually being remodeled by
osteoblasts (which build bone) and osteoclasts (which destroy bone).
The shape and size of the bones is determined by constraints
determined by their environment: the parts that they must be
associated with, such as muscles, ligaments, tendons, and other bones.

Because the generator need not know about how the tester accepts
or rejects its proposals, and the tester need not know how the
generator makes its proposals, the two parts can be independently
developed. This makes adaptation and evolution more efficient,
because a mutation to one or the other of these two subsystems need
not be accompanied by a complementary mutation to the other.
However, this isolation can be expensive because of the wasted effort
of generation and rejection of failed proposals.17

Indeed, generate and test is a metaphor for all of evolution. The
mechanisms of biological variation are random mutations:
modifications of the genetic instructions. Most mutations are neutral
in that they do not directly affect fitness because of degeneracy in the
systems. Natural selection is the test phase. It does not depend on the
method of variation, and the method of variation does not anticipate
the effect of selection.

There are even more striking phenomena: even in closely related
creatures some components that end up almost identical in the adult
are constructed by entirely different mechanisms in the embryo.18 For
distant relationships, divergent mechanisms for constructing common
structures may be attributed to “convergent evolution,” but for close
relatives it is more likely evidence for separation of levels of detail, in
which the result is specified in a way that is somewhat independent of
the way it is accomplished.



Engineered systems may show similar structure. We try to separate
specification from implementation: there are often multiple ways to
satisfy a specification, and designs may choose different
implementations. The best method to use to sort a data set depends on
the expected size of the data set, as well as the computational cost of
comparing elements. The appropriate representation of a polynomial
depends on whether it is sparse or dense. But if choices like these are
made dynamically (an unusual system) they are deterministic: we do
not see many systems that simultaneously try several ways to solve a
problem and use the one that converges first (what are all those cores
for, anyway?). It is even rare to find systems that try multiple methods
sequentially: if one method fails try another. We will examine use of
backtracking to implement generate-and-test mechanisms in pattern
matching in chapter 4. We will learn how to build automatic
backtracking into languages in chapter 5. And we will learn how to
build a dependency-directed backtracking mechanism that extracts as
much information as possible from failures in chapter 7.



1.5 The cost of flexibility

Lisp programmers know the value of everything
but the cost of nothing.
Alan Perlis paraphrasing Oscar Wilde

We have noted that generality and evolvability are enhanced in
systems that use generics, layers, redundancy, degeneracy, and
exploratory behavior. Each of these is expensive, when looked at in
isolation. A mechanism that works over a wide range of inputs must
do more to get the same result than a mechanism specialized to a
particular input. A redundant mechanism has more parts than an
equivalent nonredundant mechanism. A degenerate mechanism
appears even more extravagant. And a mechanism that explores by
generate-and-test methods can easily get into an infeasible
exponential search. Yet these are key ingredients in evolvable systems.
Perhaps to make truly robust systems we must be willing to pay for
what appears to be a rather elaborate and expensive infrastructure.

Part of the problem is that we are thinking about cost in the wrong
terms. Use of time and space matters, but our intuition about where
those costs come from is poor. Every engineer knows that evaluating
the real performance of a system involves extensive and careful
measurements that often show that the cost is in surprising places. As
complexity increases, this will only get harder. But we persist in doing
premature optimization at all levels of our programs without knowing
its real value.

Suppose we separate the parts of a system that have to be fast from
the parts that have to be smart. Under this policy, the cost of
generality and evolvability can be confined to the parts that have to be
smart. This is an unusual perspective in computing systems, yet it is
ubiquitous in our life experience. When we try to learn a new skill, for
example to play a musical instrument, the initial stages involve
conscious activity to connect the intended effect to the physical



movements required to produce it. But as the skill is mastered, most of
the work is done without conscious attention. This is essential to being
able to play at speed, because the conscious activity is too slow.

A similar argument is found in the distinction between hardware
and software. Hardware is designed for efficiency, at the cost of having
a fixed interface. One can then build software on top of that interface—
in effect creating a virtual machine—using software. That extra layer of
abstraction incurs a well-known cost, but the tradeoff is well worth the
generality that is gained. (Otherwise we'd still be programming in
assembly language!) The point here is that this layered structure
provides a way to have both efficiency and flexibility. We believe that
requiring an entire system to be implemented in the most efficient
possible way is counterproductive, preventing the flexibility for
adapting to future needs. The real cost of a system is the time spent by
programmers—in designing, understanding, maintaining, modifying,
and debugging the system. So the value of enhanced adaptability may
be even more extreme. A system that is easily adapted and maintained
eliminates one of the largest costs: teaching new programmers how
the existing system works, in all its gory detail, so that they know
where to reach in and modify the code. Indeed, the cost of our brittle
infrastructure probably greatly exceeds the cost of flexible design, both
in the cost of disasters and in the lost opportunity costs due to the time
of redesign and rebuilding. And if a significant fraction of the time
spent reprogramming a system for a new requirement is replaced by
having that system adapt itself to the new situation, that can be an
even bigger win.

The problem with correctness

To the optimist, the glass is half full. To the
pessimist, the glass is half empty. To the
engineer, the glass is twice as big as it needs to
be.
author unknown

But there may be an even bigger cost to building systems in a way that



gives them a range of applicability greater than the set of situations
that we have considered at design time. Because we intend to be
willing to apply our systems in contexts for which they were not
designed, we cannot be sure that they work correctly!

In computer science we are taught that the “correctness” of software
is paramount, and that correctness is to be achieved by establishing
formal specification of components and systems of components and by
providing proofs that the specifications of a combination of
components are met by the specifications of the components and the
pattern by which they are combined.19 We assert that this discipline
makes systems more brittle. In fact, to make truly robust systems we
must discard such a tight discipline.

The problem with requiring proofs is that it is usually harder to
prove general properties of general mechanisms than it is to prove
special properties of special mechanisms used in constrained
circumstances. This encourages us to make our parts and
combinations as special as possible so we can simplify our proofs. But
the combination of tightly specialized parts is brittle—there is no room
for variation!20

We are not arguing against proofs. They are wonderful when
available. Indeed, they are essential for critical system components,
such as garbage collectors (or ribosomes).21 However, even for safety-
critical systems, such as autopilots, the restriction of applicability to
situations for which the system is provably correct as specified may
actually contribute to unnecessary failure. Indeed, we want an
autopilot to make a good-faith attempt to safely fly an airplane that is
damaged in a way not anticipated by the designer!

We are arguing against the discipline of requiring proofs: the
requirement that everything must be proved to be applicable in a
situation before it is allowed to be used in that situation excessively
inhibits the use of techniques that could enhance the robustness of
designs. This is especially true of techniques that allow a method to be
used, on a tight leash, outside of its proven domain, and techniques
that provide for future expansion without putting limits on the ways
things can be extended.

Unfortunately, many of the techniques we advocate make the
problem of proof much more difficult, if not practically impossible. On



the other hand, sometimes the best way to attack a problem is to
generalize it until the proof becomes simple.

 

1 The discovery of the existence of universal machines by Alan Turing
[124], and the fact that the set of functions that can be computed by
Turing machines is equivalent to both the set of functions
representable in Alonzo Church's λ calculus [17, 18, 16] and the
general recursive functions of Kurt Gödel [45] and Jacques
Herbrand [55], ranks among the greatest intellectual achievements
of the twentieth century.

2 Of course, there are some wonderful exceptions. For example, Emacs
[113] is an extensible editor that has evolved gracefully to adapt to
changes in the computing environment and to changes in its users’
expectations. The computing world is just beginning to explore
“engineered frameworks,” for example, Microsoft's .net and Sun's
Java. These are intended to be infrastructures to support evolvable
systems.

3 A parti (pronounced parTEE) is the central idea of an architectural
work: it is “the [architectural] composition being conceived as a
whole, with the detail being filled in later.” [62]

4 Java does support interfaces, which could be considered a kind of
parti, in that they are an abstract representation of the program.
But a parti combines both abstract and concrete components, while
a Java interface is wholly abstract. Not to mention that over-use of
interfaces is considered a “code smell” by many programmers.

5 The TTL Data Book for Design Engineers [123] is a classic example
of a successful set of specifications for digital-system components.
TTL specifies several internally consistent “families” of small-scale
and medium-scale integrated-circuit components. The families
differ in such characteristics as speed and power dissipation, but
not in function. The specification describes the static and dynamic
characteristics of each family, the functions available in each family,



and the physical packaging for the components. The families are
cross-consistent as well as internally consistent in that each
function is available in each family, with the same packaging and a
consistent nomenclature for description. Thus a designer may
design a compound function and later choose the family for
implementation. Every good engineer (and biologist!) should be
familiar with the lessons of TTL.

6 An elementary version of this self-configuring behavior has been
demonstrated by Jacob Beal in his S.M. thesis [9].

7 Kirschner and Gerhart examine this [70].

8 This is a very vague description of a complex process involving
gradients of morphogens. We do not intend to get more precise
here, as this is not about biology, but rather about how biology can
inform engineering.

9 We have investigated some of the programming issues involved in
this kind of development in our Amorphous Computing project [2].

10 Automagically: “Automatically, but in a way which, for some reason
(typically because it is too complicated, or too ugly, or perhaps even
too trivial), the speaker doesn't feel like explaining.” From The
Hacker's Dictionary [117, 101]

11 One well-studied example of this kind of mechanism is the
formation of the submandibular gland of the mouse. See, for
example, the treatment in [11] or the summary in [7] section 3.4.3.

12 Piotr Mitros has developed a novel design strategy for building
analog circuits from potentially universal building blocks. See [92].

13 Although clear in extreme cases, the distinction biologists make
between redundancy and degeneracy is fuzzy at the boundary. For
more information see [32].

14 Some computer scientists have used simulation to investigate the
evolution of evolvability [3].

15 Indeed, one often hears arguments against building degeneracy into



an engineered system. For example, in the philosophy of the
computer language Python it is claimed: “There should be one—and
preferably only one—obvious way to do it.” [95]

16 This thesis is nicely explored in the book of Kirschner and Gerhart
[70].

17 This expense can be greatly reduced if there is sufficient
information present to quickly reduce the number of candidates
that must be tested. We will examine a very nice example of this
optimization in chapter 7.

18 The cornea of a chick and the cornea of a mouse are almost
identical, but the morphogenesis of these two are not at all similar:
the order of the morphogenetic events is not even the same. Bard
[7] section 3.6.1 reports that having divergent methods of forming
the same structures in different species is common. He quotes a
number of examples. One spectacular case is that the frog
Gastrotheca riobambae (see del Pino and Elinson [28]) develops
ordinary frog morphology from an embryonic disk, whereas other
frogs develop from an approximately spherical embryo.

19 It is hard, and perhaps impossible, to specify a complex system. As
noted on page 7, it is easy to specify that a chess player must play
legal chess, but how would we specify that it plays well? And unlike
chess, whose rules do not change, the specifications of most
systems are dynamically changing as the conditions of their usage
change. How do we specify an accounting system in the light of
rapidly changing tax codes?

20 Indeed, Postel's Law (on page 3) is directly in opposition to the
practice of building systems from precisely and narrowly specified
parts: Postel's law instructs us to make each part more generally
applicable than absolutely necessary for any particular application.

21 A subtle bug in a primitive storage management subsystem, like a
garbage collector, is extremely difficult to debug—especially in a
system with concurrent processes! But if we keep such subsystems
simple and small they can be specified and even proved “correct”



with a tractable amount of work.



2 
Domain-Specific Languages

One powerful strategy for building flexibility into a programming
project is to create a domain-specific language that captures the
conceptual structure of the subject matter of the programs to be
developed. A domain-specific language is an abstraction in which the
nouns and verbs of the language are directly related to the problem
domain. Such a language allows an application program to be written
directly in terms of the domain. By its nature, a domain-specific
language implements a fairly complete model of the domain, in excess
of what is needed for a particular application.1 Although this may seem
like extra work that is not essential to the particular problem at hand,
it is often less work than writing a monolithic program, and the
resulting program is much easier to modify, debug, and extend.

So a domain-specific language layer is built to support more than
just the development of a particular program. It provides a general
framework for the construction of a variety of related programs that
share the domain of discourse. It simplifies the process of extending
an existing application in that domain. And it provides a substrate that
allows related applications to cooperate.

In this chapter we first introduce systems of combinators, a
powerful organizational strategy for the erection of domain-specific
language layers. We will demonstrate the effectiveness of this strategy
by showing how to reformulate the ugly mess of regular expressions
for string matching into a pretty combinator-based domain-specific
language embedded in Scheme. But sometimes we have components
that do not easily fit into a clean system— sometimes we need a system
of adapters. We illustrate this with a domain-specific language for
making unit-conversion wrappers for procedures, allowing procedures
written assuming one unit system to be used with a different unit
system. Finally, we consider the broad domain of board games. We see



how it is possible to abstract the details of the domain by building an
interpreter for the rules of the game.



2.1 Combinators

Biological systems achieve much of their adaptability through the use
of very general parts (cells) that are dynamically configured and
consequently able to adjust as their environment changes.
Computational systems usually do not use this strategy, instead
relying on a hierarchy of custom parts and combinations. In recent
years, large libraries of well-specified higher-level parts have raised
the abstraction level of this activity. But the means of combination are
rarely abstracted or shared, other than as “patterns.”2

In some situations we can improve on this practice by simple
strategies that promote the use of shared combination mechanisms. If
the systems we build are made up from members of a family of “mix-
and-match” components that combine to make new members of the
family, perturbations of the requirements can sometimes be addressed
by rearrangement of components.

A system of combinators is a set of primitive parts and a set of
means of combining parts such that the interface specifications of the
combinations are the same as those of the primitives. This enables
construction without accidental interactions between the parts. A
classic example of a combinator-like system is TTL [123], which is a
historic library of standard parts and combinations for building
complex digital systems.

Combinator systems provide a design strategy for domain-specific
languages. The elements of the system are words in the language, and
the combinators are used to combine them into phrases. Combinator
systems have the significant advantage that they are easy to build and
to reason about, but they have limitations, which we will discuss in
section 3.1.5. When they fit the domain, they are an excellent strategic
choice.

But how do we arrange to build our systems by combining elements
of a family of mix-and-match components? We must identify a set of
primitive components and a set of combinators that combine
components so as to make compound components with the same



interface as the primitive components. Such sets of combinators are
sometimes explicit, but more often implicit, in mathematical notation.

2.1.1 Function combinators
The use of functional notation in mathematics is a combinator
discipline. A function has a domain, from which its arguments are
selected, and a range (or codomain) of its possible values. There are
combinators that produce new functions as combinations of others.
For example, the composition f ○ g of functions f and g is a new
function that takes arguments in the domain of g and produces values
in the codomain of f. If two functions have the same domain and
codomain, and if arithmetic is defined on their common codomain,
then we can define the sum (or product) of the functions as the
function that when given an argument in their common domain, is the
sum (or product) of the values of the two functions at that argument.
Languages that allow first-class procedures provide a mechanism to
support this means of combination, but what really matters is a good
family of pieces.

Organizing a system around combinators has several advantages.
The parts that are made can be arbitrarily mixed and matched. Any
combination yields a legal program, whose behavior transparently
depends only on the behaviors of the parts and the ways that they are
combined. The context in which a part appears does not change the
behavior of the part: it is always acceptable to pick up a compound
part to use it in a new context, without worry about its behavior in that
context. Thus such programs are easy to write, easy to read, and easy
to verify. A program built on combinators is extensible, because
introduction of new parts or new combinators does not affect the
behavior of existing programs.

We can think of function combinators as implementing wiring
diagrams that specify how a function is built by combining its parts.
For example, functional composition represents a box made of two
subboxes so that the output of the first feeds the input of the second,
as shown in figure 2.1. A program that implements this idea is
straightforward:

(define (compose f g)



  (lambda args

    (f (apply g args))))

Figure 2.1 The composition f ◦ g of functions f and g is a new function that is defined by this
“wiring diagram.” The input to f ◦ g is given to g. The output of g is then passed to f , and it
produces the output of f ◦ g.

(It gets more exciting if we want to check that the arities match: that
the function represented by procedure f takes only one argument, to
match the output of g. It gets even more fun if g can return multiple
values and f must take those arguments. We may also want to check
that the arguments passed to the composition are the right number for
g. But these are fine points that we will deal with later.)

We can demonstrate composition with a simple example:

((compose (lambda (x) (list ’foo x))

          (lambda (x) (list ’bar x)))

 ’z)

(foo (bar z))

It is sometimes nicer to name the procedure that is being returned
by a combinator. For example, we could write compose as

(define (compose f g)

  (define (the-composition . args)

    (f (apply g args)))

  the-composition)

The name the-composition is not defined outside of the scope of the
definition of compose, so there is no obvious advantage to this way of
writing the compose procedure. We often use anonymous procedures
defined by lambda expressions in our programs, as in the first version
of compose above. So the choice of how to write the program is mostly



a matter of style.3
Even with just this compose combinator we can write some rather

elegant code. Consider the problem of computing the nth iterate of a
function f(x) = f(f−1(x)). We can write this elegantly as a program:

(define ((iterate n) f)

  (if (= n 0)

      identity

      (compose f ((iterate (- n 1)) f))))

(define (identity x) x)

The result of ((iterate n) f) is a new function, of the same type
as f. It can be used wherever f can be used. So (iterate n) is itself a
function combinator. Now we can use this to determine the result of
repeatedly squaring a number:

(((iterate 3) square) 5)

390625

Notice the analogy: function composition is like multiplication, so
function iteration is like exponentiation.

There are many simple combinators that are generally useful in
programming. We will present just a few here to give a feeling for the
range of possibilities.

We can arrange to use two functions in parallel, then combine their
results with a specified combiner function (see figure 2.2). This
parallel combination is implemented with the procedure



Figure 2.2 In parallel-combine the functions f and g take the same number of arguments.
The input to the “parallel combination” is passed to both of them. Their outputs are then
combined by the function h, of two arguments.

(define (parallel-combine h f g)

  (define (the-combination . args)

    (h (apply f args) (apply g args)))

  the-combination)

((parallel-combine list

                   (lambda (x y z) (list ’foo x y z))

                   (lambda (u v w) (list ’bar u v w)))

 ’a ’b ’c)

((foo a b c) (bar a b c))

The parallel-combine combinator can be useful in organizing a
complex process. For example, suppose we have a source of images of
pieces of vegetable. We may have one procedure that given the image
can estimate the color of the vegetable, and another that can give a
description of the shape (leaf, root, stalk, ...). We may have a third
procedure that can combine these descriptions to identify the
vegetable. These can be neatly composed with parallel-combine.

Arity
There are entire families of combinators that we can use in



programming that we don't normally think of. Many of these appear in
common mathematical contexts. For example, tensors are an
extension of linear algebra to linear operators with multiple
arguments. But the idea is more general than that: the “tensor
combination” of two procedures is just a new procedure that takes a
data structure combining arguments for the two procedures. It
distributes those arguments to the two procedures, producing a data
structure that combines the values of the two procedures. The need to
unbundle a data structure, operate on the parts separately, and
rebundle the results is ubiquitous in programming. The wiring
diagram in figure 2.3 shows spread-combine. It is a generalization of
the tensor product in multilinear algebra. In the mathematical tensor
product, f and g are linear functions of their inputs, and h is a trace
over some shared indices; but tensors are just the special case that
inspired this combinator.

Figure 2.3 In spread-combine the n +m arguments are split between the functions f and g.
The first n arguments go to f and the m other arguments go to g. The resulting outputs are
then combined by the function h, of two arguments.

The program to implement spread-combine is a bit more
complicated than parallel-combine, because it must distribute the
correct arguments to f and g. Here is a first draft of that code:



(define (spread-combine h f g)

  (let ((n (get-arity f)))

    (define (the-combination . args)

      (h (apply f (list-head args n))

         (apply g (list-tail args n))))

    the-combination))

This code requires a way of determining how many arguments a
procedure takes (its arity), because it has to pick out the arguments
for f and then pass the rest to g.

This version of spread-combine is not very good. The most
egregious problem is that the-combination takes any number of
arguments, so it does not have a well-defined numerical arity, and
thus it cannot be passed to another combinator that needs its arity.
For example, the result of a spread-combine cannot be passed as the
second argument f to another spread-combine. So, somehow, we
have to decorate the-combination with an appropriate arity. Here is
a second draft:

(define (spread-combine h f g)

  (let ((n (get-arity f)) (m (get-arity g)))

    (let ((t (+ n m)))

      (define (the-combination . args)

        (h (apply f (list-head args n))

           (apply g (list-tail args n))))

      (restrict-arity the-combination t))))

Here, the procedure the-combination that is returned has its arity
specified, so it can be the input to some other combinator that requires
an arity. The restrict-arity procedure takes a procedure, annotates
it so that its arity can be obtained by get-arity, and returns the
annotated procedure.

This is pretty good, but the best programs are written by paranoids!
We want to catch errors as early as possible, before they become hard
to locate or cause serious trouble. So let's annotate this code with an
assertion in Paranoid Programming Style, to check that we have the
right number of arguments to our combination.

(define (spread-combine h f g)

  (let ((n (get-arity f)) (m (get-arity g)))

    (let ((t (+ n m)))

      (define (the-combination . args)



        (assert (= (length args) t))

        (h (apply f (list-head args n))

           (apply g (list-tail args n))))

      (restrict-arity the-combination t))))

((spread-combine list

                 (lambda (x y) (list ’foo x y))

                 (lambda (u v w) (list ’bar u v w)))

 ’a ’b ’c 'd ’e)

((foo a b) (bar c d e))

The special form assert is just a convenient way to signal an error if
its argument does not have a true value.

One way to write restrict-arity and get-arity is as follows:

(define (restrict-arity proc nargs)

  (hash-table-set! arity-table proc nargs)

  proc)

(define (get-arity proc)

  (or (hash-table-ref/default arity-table proc #f)

      (let ((a (procedure-arity proc))) ;arity not in table

        (assert (eqv? (procedure-arity-min a)

                      (procedure-arity-max a)))

        (procedure-arity-min a))))

(define arity-table (make-key-weak-eqv-hash-table))

Here we are using a hash table to attach a “sticky note” to the
procedure.4 This is a simple trick for adding information to an existing
object, but it depends on the uniqueness of the object being annotated,
so it should be used carefully.

If the procedure get-arity is unable to find an explicit value in
arity-table, it computes one using primitives from the underlying
MIT/GNU Scheme system. This involves some hair, because those
primitives support a more general idea of arity: that a procedure
requires a minimum number of arguments, and may have an optional
maximum number of arguments. Our arity code expects an arity to be
a fixed number of arguments, and so get-arity cannot work with any
other kind of procedure. Unfortunately, this excludes procedures like +
that take any number of arguments. Changing the arity code to use a
more general notion of arity would complicate it, and our goal here is
to have a clear exposition rather than a general solution (see exercise



2.2).



Exercise 2.1: Arity repair
The procedures compose and parallel-combine that we have
introduced do not obey the requirement that they advertise the arity of
the combination. Thus they would not be good citizens of our family of
combinators. Fix the implementations of compose and parallel-
combine shown above, so that

they check their components to make sure that the arities are
compatible;

the combination they construct checks that it is given the correct
number of arguments when it is called;

the combination advertises its arity correctly for get-arity.



Exercise 2.2: Arity extension
Our exposition of useful combinators is flawed in that the arity
mechanism we displayed cannot handle the more general arity
mechanism used by MIT/GNU Scheme. For example, the addition
procedure, which is the value of +, can take any number of arguments:

(procedure-arity-min (procedure-arity +)) = 0

(procedure-arity-max (procedure-arity +)) = #f

and the arctangent procedure can take either 1 or 2 arguments:

(procedure-arity-min (procedure-arity atan)) = 1

(procedure-arity-max (procedure-arity atan)) = 2

It is useful to extend the handling of arities so that combinators can
work with these more complex situations.

a. Sketch a plan for how to extend the combinators to use the more
general arities. Note that you may not always be able to use
arithmetic on the arities. What choices will you have to make in
reformulating spread-combine? For example, what kinds of
restrictions will be needed on the procedures f, g, and h in spread-
combine?

b. Apply your plan and make it all work!

For any language there are primitives, means of combination, and
means of abstraction. A combinator language defines primitives and
means of combination, inheriting its means of abstraction from the
underlying programming language. In our example, the primitives are
functions, and the means of combination are the combinators
compose, parallel-combine, spread-combine, and others we may
introduce.

Multiple values
Notice that parallel-combine and spread-combine are similar in
that each is the application of a combiner h to the results of f and g.



But we did not use compose to construct these combinators. To
abstract this pattern we need to be able to return multiple values from
the combination of f and g and then use those multiple values as
arguments for h. We could do this by returning a compound data
structure, but a better way is to use the Scheme multiple-value return
mechanism. Given multiple values we can define spread-combine as a
composition of two parts, h and this combination of f and g:5

(define (spread-apply f g)

  (let ((n (get-arity f)) (m (get-arity g)))

    (let ((t (+ n m)))

      (define (the-combination . args)

        (assert (= (length args) t))

        (values (apply f (list-head args n))

                (apply g (list-tail args n))))

      (restrict-arity the-combination t))))

Figure 2.4 The combinator spread-combine is really a composition of two parts. The first
part, spread-apply, is the combination of the functions f and g with the correct arguments
routed to them. The second part is the combiner h, which is just composed with the first part.
This decomposition is enabled by use of the multiple-values mechanism of Scheme.

The Scheme procedure values returns the results of applying both f
and g.6

Below we will generalize compose so that we can directly implement



the abstraction shown in figure 2.4 as follows:

(define (spread-combine h f g)

  (compose h (spread-apply f g)))

This has the same behavior as our original version:

((spread-combine list

                 (lambda (x y) (list ’foo x y))

                 (lambda (u v w) (list ’bar u v w)))

 ’a ’b ’c 'd ’e)

((foo a b) (bar c d e))

To make this work, we generalize compose to allow multiple values
to pass between the composed procedures:

(define (compose f g)

  (define (the-composition . args)

    (call-with-values (lambda () (apply g args))

      f))

  (restrict-arity the-composition (get-arity g)))

Here the second argument to compose returns two values:

((compose (lambda (a b)

            (list ’foo a b))

          (lambda (x)

            (values (list ’bar x)

                    (list ’baz x))))

 ’z)

(foo (bar z) (baz z))

Now we can generalize even further. We can allow all of the
functions we are combining to return multiple values. If f and g both
return multiple values we can combine those values into multiple
values that the-combination can return:

(define (spread-apply f g)

  (let ((n (get-arity f)) (m (get-arity g)))

    (let ((t (+ n m)))

      (define (the-combination . args)

        (assert (= (length args) t))

        (let-values ((fv (apply f (list-head args n)))

                     (gv (apply g (list-tail args n))))

          (apply values (append fv gv))))

      (restrict-arity the-combination t))))



((spread-combine list

                 (lambda (x y) (values x y))

                 (lambda (u v w) (values w v u)))

 ’a ’b ’c 'd ’e)

(a b e d c)

The only restriction is that the total number of values returned must
be appropriate for the arity of h.



Exercise 2.3: A quickie
Reformulate parallel-combine to be a composition of two parts and
to allow the parts to return multiple values.

A small library
Many common patterns of usage can be captured as combinators, and
very pretty programs are often constructed using such techniques. It is
to our advantage to expose and abstract such common patterns. Here
are a few more to think about.

Often we have an interface that is more general than necessary in a
particular situation. In such a case we may want to preserve the
interface, but call some more specialized procedure that does not need
all of the parameters we can supply in the general case; so we choose
to make a version of our specialized procedure that ignores some
arguments.

The procedure discard-argument takes the index, i, of the
argument to be discarded and returns a combinator. The combinator
takes a function, f, of n arguments and returns a new function the-
combination of n + 1 arguments that applies f to the n arguments
resulting from deleting the ith argument from the n + 1 given
arguments. Figure 2.5 illustrates this idea. The code for this
combinator is:

Figure 2.5 The combinator (discard-argument 2) takes a three-argument function f and
makes a new function of four arguments that ignores its third argument (i=2) and passes the
remaining arguments to f.



(define (discard-argument i)

  (assert (exact-nonnegative-integer? i))

  (lambda (f)

    (let ((m (+ (get-arity f) 1)))

      (define (the-combination . args)

        (assert (= (length args) m))

        (apply f (list-remove args i)))

      (assert (< i m))

      (restrict-arity the-combination m))))

(define (list-remove lst index)

  (let lp ((lst lst) (index index))

    (if (= index 0)

        (cdr lst)

        (cons (car lst) (lp (cdr lst) (- index 1))))))

(((discard-argument 2)

  (lambda (x y z) (list ’foo x y z)))

 ’a ’b ’c 'd)

(foo a b d)

One can generalize this combinator to discard multiple arguments.
The opposite of the situation of discard-argument also commonly
occurs. In figure 2.6 we see a wiring diagram for specializing a
procedure by specifying all but one argument in advance, leaving one
to be passed in the call. This is traditionally called currying in honor
of the logician Haskell Curry, who was an early investigator of
combinatory logic.7

Figure 2.6 The combinator ((curry-argument 2) ’a ’b ’c) specifies three of the arguments
to the four-argument function f , leaving the third argument (i=2) to be supplied in the call to
the resulting one-argument function.

The code for curry-argument poses no surprises:



(define ((curry-argument i) . args)

  (lambda (f)

    (assert (= (length args) (- (get-arity f) 1)))

    (lambda (x)

      (apply f (list-insert args i x)))))

(define (list-insert lst index value)

  (let lp ((lst lst) (index index))

    (if (= index 0)

        (cons value lst)

        (cons (car lst) (lp (cdr lst) (- index 1))))))

((((curry-argument 2) ’a ’b ’c)

  (lambda (x y z w) (list ’foo x y z w)))

 'd)

(foo a b d c)

Note that here we do not need to use restrict-arity because the
returned procedure has exactly one argument.8 In exercise 2.5 we
generalize this combinator for currying, to leave multiple arguments to
be supplied.

Sometimes we want to use a library procedure that has a different
order of arguments than the standard that we are using in the current
application. Rather than make a special interface for that procedure,
we can use a general permutation procedure to rearrange things, as in
figure 2.7. This program is also simple, but notice that the procedure
the-combination that is returned from the combinator and actually
runs on args does not have to interpret the permutation specification
—this is done once in the let surrounding the-combination and
referred to within. In general, writing code this way allows some deep
optimizations by early computation, even in the light of very late
binding!



Figure 2.7 The combinator (permute-arguments 1 2 0 3) takes a function f of four arguments
and produces a new function of four arguments that permutes its arguments according to the
supplied permutation before passing them to f.

(define (permute-arguments . permspec)

  (let ((permute (make-permutation permspec)))

    (lambda (f)

      (define (the-combination . args)

        (apply f (permute args)))

      (let ((n (get-arity f)))

        (assert (= n (length permspec)))

        (restrict-arity the-combination n)))))

(((permute-arguments 1 2 0 3)

  (lambda (x y z w) (list ’foo x y z w)))

 ’a ’b ’c 'd)

(foo b c a d)

The procedure make-permutation is simple, but it is not efficient:

(define (make-permutation permspec)

  (define (the-permuter lst)

    (map (lambda (p) (list-ref lst p))

         permspec))

  the-permuter)

2.1.2 Combinators and body plans
A moral of this story is that a structure composed of combinations of
combinators is a body plan, much like the body plans of animals or
engineering patterns like the superheterodyne radio receiver (figure
1.1 on page 10). Consider the compose combinator. It provides an
arrangement of locales, the procedures f and g. The locales are
connected by a standard interconnect, but that is all that is required of
f and g. Indeed, these components may be anything that can take the
right number of arguments and can return the right number of values.
So the combinators are organizing principles, like Hox genes: they
specify locales and their relationship without mandating what happens
inside each locale.



Exercise 2.4: As compositions?
You may have noticed that the combinators made by discard-
argument, curry-argument, and permute-arguments can each be
thought of as a composition of an argument manipulation and a
procedure. Rebuild these combinators as compositions using the
multiple-value return mechanism.



Exercise 2.5: Useful combinators
It is time to fill out this small library a bit more.

a. The combinators discard-argument and curry-argument
could be generalized to allow ignoring or prespecializing on more
than one argument. The method of specifying the permutation for
permute-arguments seems to be a pretty general way to specify
arguments by their order in a call (zero-based). Build generalized
versions of these procedures that have such an interface. Name
them discard-arguments and curry-arguments. Make your code
compatible with the code in the text: your (curry-arguments 2)
should do exactly what (curry-argument 2) does.

b. What other combinators would you find useful? Make up a list,
with appropriate use cases that you might encounter in actual code.
Write implementations of them for your library.

c. Further generalize compose so that it can take any number of
functional aguments. The expression (compose f g h) is
equivalent to (compose f (compose g h)). Note that it should
also be equivalent to (compose (compose f g) h). Be careful:
what is the composition of zero arguments?



2.2 Regular expressions

Regular expressions are widely used for string matching. Although
regular-expression systems are derived from a perfectly good
mathematical formalism, the particular choices made by implementers
to expand the formalism into useful software systems are often
disastrous: the quotation conventions adopted are highly irregular; the
egregious misuse of parentheses, both for grouping and for backward
reference, is a miracle to behold. In addition, attempts to increase the
expressive power and address shortcomings of earlier designs have led
to a proliferation of incompatible derivative languages.

On the surface, regular expressions look like a combinator
language, because expression fragments can be combined to make
more complex expressions. But the meaning of a fragment is highly
dependent on the expression it is embedded in. For example, if we
want a caret, ∧, in a bracket expression, [...], the caret must not be
in the first character position, because if the caret appears after the
first character it is just an ordinary character, but if it appears as the
first character it negates the meaning of the bracket expression. Thus a
bracket expression may not contain just a caret.

So the syntax of the regular-expression language is awful; there are
various incompatible forms of the language; and the quotation
conventions are baroquen [sic]. While regular expression languages
are domain-specific languages, they are bad ones. Part of the value of
examining regular expressions is to experience how bad things can be.

Nevertheless, there is a great deal of useful software, for example
grep, that uses regular expressions to specify the desired behavior. We
will invent a better domain-specific combinator language for
specifying regular expressions and a means of translating this
language to conventional regular-expression syntax. We will use the
POSIX Basic Regular Expression (BRE) syntax as a target for our
translator [96], since it is a subset of most other regular-expression
syntaxes. POSIX also defines a more powerful Extended Regular
Expression (ERE) syntax, which we will consider in an exercise.

With this machinery we will be able to use the capabilities of



systems like grep from inside the Scheme environment. We will have
all the advantages of a combinator language. It will have a clean,
modular description while retaining the ability to use existing tools.
Users of this language will have nothing to grep about, unless they
value concise expression over readability.

As with any language there are primitives, means of combination,
and means of abstraction. Our language allows the construction of
patterns that utilities like grep can match against character-string
data. Because this language is embedded in Scheme, we inherit
Scheme's power: we can use Scheme constructs to combine patterns
and use Scheme procedures to abstract them.

2.2.1 A regular expression combinator language
Patterns are built out of these primitive patterns:

(r:dot) matches any character except newline

(r:bol) matches only the beginning of a line

(r:eol) matches only the end of a line

(r:quote string) matches the string

(r:char-from string) matches one character that is in the string

(r:char-not-from string) matches one character that is not in the
string

Patterns can be combined to make compound patterns:

(r:seq pattern ...)
This pattern matches each argument pattern in sequence, from left to
right.

(r:alt pattern ...)
This pattern tries each argument pattern from left to right, until one of
these alternatives matches. If none matches then this pattern does not
match.



(r:repeat min max pattern)
This pattern tries to match the argument pattern a minimum of min
times but no more than a maximum of max times. If max is given as
#f then no maximum is specified. If max equals min the given pattern
must be matched exactly that many times.

Here are some example patterns:

(r:seq (r:quote "a") (r:dot) (r:quote "c"))

matches any three-character string beginning with a and ending with
c. For example, it will match abc and aac and acc.

(r:alt (r:quote "foo") (r:quote "bar") (r:quote "baz"))

matches either foo, bar, or baz.

(r:repeat 3 5 (r:alt (r:quote "cat") (r:quote "dog")))

matches catdogcat and catcatdogdog and dogdogcatdogdog but not
catcatcatdogdogdog.

We will implement patterns as Scheme expressions. Thus we can
freely mix them with any Scheme code, giving us all the power of the
programming language.

2.2.2 Implementation of the translator
Let's look at how this language is implemented. Regular expressions
will be represented as strings in the POSIX Basic Regular Expression
syntax.

(define (r:dot) ".")

(define (r:bol) "∧")

(define (r:eol) "$")

These directly correspond to regular-expression syntax.
Next, r:seq implements a way to treat a given set of regular-

expression fragments as a self-contained element:

(define (r:seq . exprs)

  (string-append "\\(" (apply string-append exprs) "\\)"))

The use of parentheses in the result isolates the content of the given



expression fragments from the surrounding context. Unfortunately,
the use of \ in the translated output is necessary. In basic regular
expressions, the parenthesis characters are treated as self-quoting
characters. Here we need them to act as grouping operations, which is
done by preceding each with a backslash. Adding insult to injury,
when this regular expression is put into a Scheme string, it is
necessary to quote each backslash character with another backslash.
So our example (r:seq (r:quote "a") (r:dot) (r:quote "c"))
translates to \(\(a\).\(c\)\), or as a Scheme string "\\(\\

(a\\).\\(c\\)\\)". Ugh.
The implementation of r:quote is a bit harder. In a regular

expression, most characters are self-quoting. However, some
characters are regular-expression operators and must be explicitly
quoted. We wrap the result using r:seq to guarantee that the quoted
string is self-contained.

(define (r:quote string)

  (r:seq

    (list->string

      (append-map (lambda (char)

                    (if (memv char chars-needing-quoting)

                        (list #\\ char)

                        (list char)))

                  (string->list string)))))

(define chars-needing-quoting

  ’(#\. #\[ #\\ #\∧ #\$ #\*))

To implement alternative subexpressions, we interpolate a vertical
bar between subexpressions and wrap the result using r:seq:

(define (r:alt . exprs)

  (if (pair? exprs)

      (apply r:seq

             (cons (car exprs)

                   (append-map (lambda (expr)

                                 (list "\\|" expr))

                               (cdr exprs))))

      (r:seq)))

(r:alt (r:quote "foo") (r:quote "bar") (r:quote "baz"))

translates to \(\(foo\)\|\(bar\)\|\(baz\)\). In addition to
quoting the parenthesis characters, we must also quote the vertical bar



character, which is otherwise a self-quoting character in this syntax.
Note that alternative expressions, unlike the rest of the regular
expressions supported here, are not supported by BRE syntax: they
are an extension defined by GNU grep that is supported by many
implementations. (Alternatives are supported by ERE syntax.)

It is straightforward to implement repetition by using copies of the
given regular expression:

(define (r:repeat min max expr)

  (apply r:seq

         (append (make-list min expr)

                 (cond ((not max) (list expr "*"))

                       ((= max min) ’())

                       (else

                        (make-list (- max min)

                                   (r:alt expr "")))))))

This makes min copies of expr, followed by (- max min) optional
copies, where each optional copy is an alternative of the expression
and an empty expression. If there is no maximum,9 the expression is
followed by an asterisk to match any number of times. So (r:repeat
3 5 (r:alt (r:quote "cat") (r:quote "dog"))) translates to
something large that might cause seizures in the reader.

The implementation of r:char-from and r:char-not-from is
complicated by the need for baroque quotation. This is best organized
in two parts, the first to handle the differences between them, and the
second for the quotation handling that they have in common:

(define (r:char-from string)

  (case (string-length string)

    ((0) (r:seq))

    ((1) (r:quote string))

    (else

     (bracket string

              (lambda (members)

                (if (lset= eqv? ’(#\- #\∧) members)

                    ’(#\- #\∧)

                    (quote-bracketed-contents members)))))))

(define (r:char-not-from string)

  (bracket string

           (lambda (members)

             (cons #\∧ (quote-bracketed-contents members)))))



(define (bracket string procedure)

  (list->string

   (append ’(#\[)

           (procedure (string->list string))

           ’(#\]))))

The special cases for r:char-from handle empty and singleton sets of
characters specially, which simplifies the general case. There is also a
special case for a set containing only caret and hyphen. But r:char-
not-from has no such special cases.

The general case handles the quotation of the three characters that
have special meaning inside a bracket by placing them in positions
where they are not operators. (We told you this was ugly!)

(define (quote-bracketed-contents members)

  (define (optional char)

    (if (memv char members) (list char) ’()))

  (append (optional #\])

          (remove

            (lambda (c)

              (memv c chars-needing-quoting-in-brackets))

            members)

          (optional #\∧)

          (optional #\-)))

(define chars-needing-quoting-in-brackets

  ’(#\] #\∧ #\-))

In order to test this code, we can print the corresponding grep
command and use cut and paste to run it in a shell. Because different
shells use different quoting conventions, we need to not only quote the
regular expression, but also choose which shell to use. The Bourne
shell is ubiquitous, and has a relatively simple quoting convention.

(define (write-bourne-shell-grep-command expr filename)

  (display (bourne-shell-grep-command-string expr filename)))

(define (bourne-shell-grep-command-string expr filename)

  (string-append "grep -e "

                 (bourne-shell-quote-string expr) 

                 " "

                 filename))



The Bourne quoting convention uses single-quote characters
surrounding a string, which quotes anything in the string other than a
single-quote, which ends the quoted string. So, to quote a single-quote
character, we must end the string, quote the single quote explicitly
using backslash, and then start another quoted string. The shell
interprets this concatenation as a single token. (Are we having fun
yet?)

(define (bourne-shell-quote-string string)

  (list->string

   (append (list #\’)

           (append-map (lambda (char)

                         (if (char=? char #\’)

                             (list #\’ #\\ char #\’)

                             (list char)))

                       (string->list string))

           (list #\’))))

The moral of this story
Our translator is very complicated because most regular expressions
are not composable to make larger regular expressions unless extreme
measures are taken to isolate the parts. Our translator does this work,
but consequently the regular expressions that it generates have much
unnecessary boilerplate. Humans don't write regular expressions this
way, because they use boilerplate only where necessary—but they
often miss instances where it is necessary, causing hard-to-find bugs.

The moral of this story is that regular expressions are a beautiful
example of how not to build a system. Using composable parts and
combinators to make new parts by combining others leads to simpler
and more robust implementations.



Exercise 2.6: Adding * and + to regular expressions
In the traditional regular expression language the asterisk (*) operator
following a subpattern means zero or more copies of the subpattern. A
common extension to the language adds the plus-sign (+) operator. A
plus sign following a subpattern means one or more copies of the
subpattern.

Define Scheme procedures r:* and r:+ to take a pattern and iterate
it as necessary. This can be done in terms of r:repeat.

Demonstrate your procedures on real data in complex patterns.



Exercise 2.7: A bug, one bad joke, two tweaks, and a
revelation
Ben Bitdiddle has noticed a problem with our implementation of
(r:repeat min max expr).

The use of (r:alt expr "") at the end of the r:repeat procedure
is a bit dodgy. This code fragment translates to \(expr\|\), where expr
is the value of expr. This relies on the fact that alternation with
something and nothing is the equivalent of saying “one or none.” (We
will omit the required but confusing backslashes in the rest of this
explanation.) That is: (expr|) denotes one or no instances of expr.
Unfortunately, this depends on an undocumented GNU extension to
the formal POSIX standard for REs.

Specifically, section 9.4.3 of the POSIX standard10 states that a
vertical line appearing immediately before a close parenthesis (or
immediately after an open parenthesis) produces undefined behavior.
In essence, an RE must not be a null sequence.

GNU grep just happens to “do the right thing” when presented with
(x|). Not all grep implementations are as tolerant.

Therefore, Ben asks his team of three code hackers (Louis, Alyssa,
and Eva) to propose alternative workarounds. Ultimately, he proposes
his own patch, which you will implement.

Louis Reasoner suggests that a simple, elegant fix would be to
replace the code fragment (r:alt expr "") with a straightforward
call to (r:repeat 0 1 expr).

Alyssa P. Hacker proposes to rewrite the else clause of r:repeat to
translate (r:repeat 3 5 x) into the equivalent of (xxx|xxxx|xxxxx)
instead of the naughty xxx(x|)(x|) non-POSIX-compliant
undefined regular expression that our code produces. She refers to
section 9.4.7 of the POSIX regular expression documentation.11

Eva Lu Ator points to the question mark (?) operator in section
9.4.6.412 and proposes that a better fix would be to implement an
r:? operator and replace (r:alt expr "") with (r:? expr).



Meanwhile, Ben looks closely at the RE spec and has a revelation.
He proposes that r:repeat be reimplemented to emit Interval
Expressions. See section 9.3.6.5 of the POSIX documentation.13

Please try not to get sick.

Let's consider each proposal:

a. Everyone giggles at Louis's silly joke. What's so funny about it?
That is, what's wrong with this idea?

A one-sentence punchline will do.

b. What advantages does Eva's proposal have over Alyssa's in
terms of both code and data?

A concise yet convincing few sentences suffice.

c. What advantage does Ben's proposal have over all the others?
Specifically, ponder which section of the POSIX document he cites
versus which sections the others cite, then take a quick peek at
exercise 2.10 below and consider the implications. Also, consider
the size of the output strings in this new code as well as the overall
clarity of the code.

Again, a brief sentence or two is sufficient.

d. Following Ben's proposal, reimplement r:repeat to emit
Interval Expressions. Hint: Scheme's number->string procedure
should be handy. Caveat: Beware the backslashes.

Show the output generated by r:repeat on a few well-chosen
sample inputs. Demonstrate your procedure on real data in some
complex patterns.



Exercise 2.8: Too much nesting
Our program produces excessively nested regular expressions: it
makes groups even when they are not necessary. For example, the
following simple pattern leads to an overly complex regular
expression:

(display (r:seq (r:quote "a") (r:dot) (r:quote "c")))

\(\(a\).\(c\)\)

Another problem is that BREs may involve back-references. (See
section 9.3.6.3 of the POSIX regular expression documentation.14) A
back-reference refers to a preceding parenthesized subexpression. So
it is important that the parenthesized subexpressions be ones
explicitly placed by the author of the pattern. (Aargh! This is one of the
worst ideas we have ever heard of—grouping, which is necessary for
iteration, was confused with naming for later reference!)

To do: Edit our program to eliminate as much of the unnecessary
nesting as you can. Caution: There are subtle cases here that you have
to watch out for. What is such a case? Demonstrate your better version
of our program and show how it handles the subtleties.

Hint: Our program uses strings as its intermediate representation
as well as its result. You might consider using a different intermediate
representation.



Exercise 2.9: Back-references
Add a procedure for constructing back-references. (See exercise 2.8.)
Have fun getting confused about BREs.



Exercise 2.10: Standards?

The best thing about standards is that there are
so many to choose from.
Andrew S. Tannenbaum

In addition to Basic Regular Expressions (BREs), there are Extended
Regular Expressions (EREs) defined in the POSIX regular expression
documentation [96]. Some software, such as egrep, uses this version
of regular expressions. Unfortunately EREs are not a conservative
extension of BREs: ERE syntax is actually inconsistent with BRE
syntax! It is an interesting project to extend our Scheme pattern
language so that the target can be either BREs or EREs.

a. What are the significant differences between BREs and EREs
that make this a pain? List the differences that must be addressed.

b. How can our translator be factored so that our language can
translate into either kind of regular expression, depending on what
is needed? How can we maintain the abstract layer that is
independent of the target regular expression language? Explain
your strategy.

c. Implement the strategy you devised in part b. Demonstrate your
work by making sure that you can run egrep as well as grep, with
equivalent results in cases that test the differences you found in
part a.



2.3 Wrappers

Sometimes we can repurpose an existing program by wrapping it
rather than rewriting it. Consider the problem of computing how the
radius of a sphere of gas varies with the temperature, keeping the
pressure constant. The ideal gas law is

(2.1)

where P is the pressure, V is the volume, n is the amount of the gas, R
is the gas constant, and T is the temperature. So the volume is
computed by

(define (gas-law-volume pressure temperature amount)

  (/ (* amount gas-constant temperature) pressure))

(define gas-constant 8.3144621)         ;J/(K*mol)

and the radius of a sphere is computed by

(define (sphere-radius volume)

  (expt (/ volume (* 4/3 pi)) 1/3))

(define pi (* 4 (atan 1 1)))

(Note: 4/3 and 1/3 are rational constants—the slash is not an infix
division operator.) The choice of gas constant makes this program use
SI units, so the pressure is in newtons per square meter, the
temperature is in kelvins, the amount is in moles, the volume is in
cubic meters, and the radius is in meters.

This looks straightforward, but use of other units can make things
complicated. Suppose we want to measure the temperature in degrees
Fahrenheit, the pressure in pounds per square inch, and the radius in
inches. Determining the correct formula is more complicated than
computing the numerical answer. We could modify the simple formula
to account for the units, but this obscures the idea of the program and



specializes it to the particular problem. Alternatively, we could arrange
to have a modular way to convert the units.

A unit conversion is a procedure that is linked to its inverse. We can
write temperature conversions between conventional units, such as
Fahrenheit and Celsius temperatures, and between SI and
conventional units.

(define fahrenheit-to-celsius

  (make-unit-conversion (lambda (f) (* 5/9 (- f 32)))

                        (lambda (c) (+ (* c 9/5) 32))))

(define celsius-to-kelvin

  (let ((zero-celsius 273.15)) ;kelvins

    (make-unit-conversion (lambda (c) (+ c zero-celsius))

                          (lambda (k) (- k zero-celsius)))))

We can access the inverse procedure using unit:invert. For
example,

(fahrenheit-to-celsius -40)

-40

(fahrenheit-to-celsius 32)

0

((unit:invert fahrenheit-to-celsius) 20)

68

We can compose unit conversions:

((compose celsius-to-kelvin fahrenheit-to-celsius) 80)

299.81666666666666

And we can define compound unit conversions. For example, pressure
can be expressed in in pounds per square inch or newtons per square
meter.15

(define psi-to-nsm

  (compose pound-to-newton

           (unit:invert inch-to-meter)

           (unit:invert inch-to-meter)))

So now we can compute, in inches, the radius of a sphere occupied
by 1 mole of an ideal gas at 68◦F and 14.7 psi.



((unit:invert inch-to-meter)

 (sphere-radius

  (gas-law-volume

   (psi-to-nsm 14.7)

   ((compose celsius-to-kelvin fahrenheit-to-celsius) 68)

   1)))

7.049624635839811

This is a mess! This implementation of unit conversions, while
simple to program, is hard to read and hard to use. On the other hand,
it nicely separates several concerns. The physics of the gas law is
separated from the geometry of the sphere and the units of
measurement. The physical and geometric descriptions are
uncluttered and each is easy to read.

We can do better. We can build a small domain-specific language,
where the domain is units. This will simplify the job of constructing
new converters, and make the resulting converters more readable.

2.3.1 Specialization wrappers
One way to proceed is to make a general family of wrappers that can
take a procedure like gas-law-volume and produce a version of that
procedure specialized by unit conversions for its output and inputs.
Although we will show how to do this for unit conversions, the code
will be general enough to build wrappers for arbitrary transformations
of data.

For the problem at hand we can construct a specializer for the gas-
law-volume procedure that knows its native units (SI). The specializer
is defined by a simple language that is compiled into the appropriate
combinations of primitive unit conversions. This is somewhat like a
combinator system except that the combinators are generated by the
compiler according to a high-level specification. We will see this
technique again in chapter 4, where we use it to compile combinations
of pattern-matching procedures from patterns.

(define make-specialized-gas-law-volume

  (unit-specializer

    gas-law-volume

    ’(expt meter 3)                    ; output (volume)

    ’(/ newton (expt meter 2))         ; pressure

    ’kelvin                            ; temperature



    'mole))                            ; amount

To make a version of the gas-law-volume procedure that uses other
units we supply the units that we want to use:

(define conventional-gas-law-volume

  (make-specialized-gas-law-volume

    ’(expt inch 3)                     ; output (volume)

    ’(/ pound (expt inch 2))           ; pressure

    ’fahrenheit                        ; temperature

    ’mole))                            ; amount

This procedure can then be used to produce the volume in cubic
inches, and therefore we can get the radius in inches.

(sphere-radius (conventional-gas-law-volume 14.7 68 1))

7.04962463583981

2.3.2 Implementing specializers
How can we make this work? There are two parts: a procedure unit-
specializer that wraps a given procedure with the necessary unit
conversions, and a means of translating the given unit expressions into
the appropriate unit conversion. The first part is

(define (unit-specializer procedure implicit-output-unit

                          . implicit-input-units)

  (define (specializer specific-output-unit

                       . specific-input-units)

    (let ((output-converter

           (make-converter implicit-output-unit

                           specific-output-unit))

          (input-converters

           (map make-converter

                specific-input-units

                implicit-input-units)))

      (define (specialized-procedure . arguments)

        (output-converter

         (apply procedure

                (map (lambda (converter argument)

                       (converter argument))

                     input-converters

                     arguments))))

      specialized-procedure))

  specializer)



The procedure unit-specializer takes a procedure to be specialized
and its implicit native units, and returns a specializer that takes
specific units and creates a specialized version of the given procedure.
The only tricky part is making sure that unit expressions are passed to
make-converter in the correct order.

The second part of the solution is make-converter, which takes two
unit expressions, and returns a converter procedure that converts data
in the first unit to the second unit. For this problem, we will make a
version of make-converter that's really dumb: it treats the unit
expressions as literal constants that can be compared with equal?.
With that simplification, make-converter can use a table lookup to
find the appropriate converter, which means we have to explicitly
provide every necessary conversion rather than deriving them from
primitive unit conversions. Here's an example of how the table is
created:

(register-unit-conversion ’fahrenheit ’celsius

                          fahrenheit-to-celsius)

(register-unit-conversion ’celsius ’kelvin

                          celsius-to-kelvin)

This registers the conversions we defined earlier. Once these
conversions are registered, we can look up either conversion direction
by the order of arguments passed to make-converter.

However, what we need isn't either of these conversions, but
instead the conversion from fahrenheit to kelvin. Since we don't
want to infer this from the existing definitions—an interesting but
much more complex implementation—we will have to build compound
conversions from the existing ones. To make that easy, we will
introduce an “algebra” of unit conversions, as follows:

(define (unit:* u1 u2)

  (make-unit-conversion (compose u2 u1)

                        (compose (unit:invert u1)

                                 (unit:invert u2))))

The procedure unit:*, combined with unit:invert, provides us with
a general ability to combine unit conversions. For convenience, we will
add the following, which are easily derived from unit:* and



unit:invert:

(unit:/ u1 u2)

(unit:expt u n)

With this algebra, we can write the conversions we want:

(register-unit-conversion ’fahrenheit ’kelvin

    (unit:* fahrenheit-to-celsius celsius-to-kelvin))

(register-unit-conversion ’(/ pound (expt inch 2))

                          ’(/ newton (expt meter 2))

    (unit:/ pound-to-newton

            (unit:expt inch-to-meter 2)))

(register-unit-conversion ’(expt inch 3) ’(expt meter 3)

    (unit:expt inch-to-meter 3))

2.3.2 Adapters
What we have shown here is one possible technique for taking an
existing program and broadening its applicability without changing
the original program. The resulting “adapter” mechanism is itself
extensible and can be used to generalize many other kinds of
programs.

This is an important principle: rather than rewriting a program to
adapt it to a new purpose, it's preferable to start with a simple and
general base program and wrap it to specialize it for a particular
purpose. The program doesn't know anything about the wrappers, and
the wrappers make few assumptions about the underlying program.
And the unit-specializer procedure knows very little about either.
Because these parts are so loosely coupled, they can each be
generalized for many purposes, including those we aren't thinking
about here. This is a kind of layering strategy, which we will expand
upon in chapter 6.



Exercise 2.11: Implementing unit conversions
Here we ask you to fill in the details that make this system work.

a. As a warmup, write the procedures register-unit-
conversion, and make-converter.

b. Write the procedures unit:/ and unit:expt.

c. Fill out a library of conversions for conventional units to SI
units. This requires conversions for mass and length. (Time is in
seconds in both systems. However, you may be interested in
minutes, hours, days, weeks, years, etc. Don't get stuck trying to
make this universal.)

d. Make some useful compounds, like velocity and acceleration.

e. For a real project, extend this specializer system for some other
data conversion of some other program, having nothing to do with
units.

f. Another big extension is to build make-converter so that it can
derive compound conversions, as required, from previously
registered conversions. This will require a graph search.



2.4 Abstracting a domain

Let's look at how a domain-specific language layer can be created as a
basis for software about board games. There are many common
features of board games; each game combines some of those features.
A domain model can be built that captures the common structure of a
class of board games, in terms of the abstract concepts that describe
board games, such as pieces, potential locations, and primitive
behaviors such as moving and capturing.

A particular board game program may be constructed entirely in
terms of the domain model. If the domain model is sufficiently
general, it will support future variation without change to the model
itself.

Let's consider board games such as chess and checkers. They are
both two-person games played on a board that is a rectangular grid.
The players have pieces that are arrayed on the board. There is never
more than one piece at any position on the board. The players
alternate moves. On each move a player chooses a piece and moves it
to some other location on the board. Sometimes an opponent's piece is
captured. This is an informal description of a domain model for a class
of board games.

Based on this kind of domain model we will construct a referee for
checkers that will compute all legal moves for a player at a given state
of play. The domain model's implementation is fairly complex,
providing implementations of pieces, coordinates, and the board. In
order to simplify our presentation we will restrict ourselves to just
what is needed by the referee.

The general organization of the referee is that it will generate all the
legal moves for each piece separately and then aggregate them. In
order to do this, it's helpful to have an abstraction that keeps track of
the effects of moving a piece. For example, one effect might change a
piece's position, another might change its type (e.g., “kinging” in
checkers), and yet another might capture an opponent's piece. Each
legal move consists of a sequence of such changes applied to the initial
state of the move.



A good program must be written many times. This is true of the
programs we show. The first draft may not clearly separate out the
concerns, but by making that draft the programmer learns the
structure of the problem. We will show two different implementations,
which will reveal the evolution of the program as we identify
shortcomings in our draft.

2.4.1 A monolithic implementation
Let's start with a simple version of the referee that one might write to
understand what really has to be done.

A checkers domain model
The first implementation will be built on a domain model that is
specific to checkers and fairly simple. In the later implementation we
will abstract away the checkers-specific parts and hide many of the
details of the domain model. The final domain model will support
other similar board games, and perhaps other domains.

The domain model we will use has three abstract types. A board
tracks the live pieces and the color of the player to move next (the
current player). It can be asked what piece, if any, is in a particular
position. A piece has a color, a position, and whether it is a king. A
position is specified by coordinates that are relative to the player to
move. Here are the operations on boards:

(current-pieces board)
gets a list of the pieces belonging to the current player.

(is-position-on-board? coords board)
tests whether the given coords specify a position on board.
Coordinates that do not satisfy this predicate will cause errors when
used with other operations.

(board-get coords board)
gets the piece that is at the position specified by coords. If there is no
piece in that position it returns #f.



(position-info coords board)
describes what occupies the position coords in board. If the position is
empty the value is unoccupied; if it contains one of the current
player's pieces the value is occupied-by-self; if it contains an
opponent's piece the value is occupied-by-opponent.

(is-position-unoccupied? coords board)
is equivalent to position-info returning unoccupied.

(is-position-occupied-by-self? coords board)
is equivalent to position-info returning occupied-by-self.

(is-position-occupied-by-opponent? coords board)
is equivalent to position-info returning occupied-by-opponent.

There is a similarly small set of operations on pieces:

(piece-coords piece)
gets the coordinates of piece.

(should-be-crowned? piece)
tests whether piece should be crowned—specifically, if it is not already
a king and is on the opponent's home row.

(crown-piece piece)
gets a new piece identical to piece except that it is a king.

(possible-directions piece)
gets a list of directions that piece may consider for a move. This does
not take into account whether moving in that direction is permissible.

The coordinate system is simple: just row and column integers.
When we refer to coordinates or coords, we mean absolute
coordinates on the board. We use the term offset for relative
coordinates. An offset can be added to some coordinates to produce
new coordinates, or inversely two coordinates can be subtracted to
produce an offset. A direction is an offset in which the row and column
are 0, 1, or −1; For checkers, the possible directions are the two



forward diagonals, with the row 1 and the column either −1 or 1. Once
a piece becomes a king, it can additionally use the backward diagonals,
with row −1. In chess, the possible moves use additional directions,
depending on the piece, while a knight move needs a more complex
definition. We won't define the procedures for manipulating
coordinates; they should be self-explanatory.

A checkers referee
We need a data structure to represent each move. Since any given
move may require changing a piece's position multiple times, we will
use a list of step objects, each of which specifies the piece prior to the
step, the piece after the step, the board after the step, and whether the
step is a jump. Such a list, which we will call a path, is ordered from
newest step to oldest. This ordering facilitates sharing of common
subpaths that may occur when a move can be continued in multiple
ways.

(step-to step)
gets the piece after step is taken.

(step-board step)
gets the board after step is taken.

(make-simple-move new-coords piece board)
gets a step that moves piece to new-coords on board.

(make-jump new-coords jumped-coords piece board)
gets a step that moves piece to new-coords on board and removes the
opponent's piece at jumped-coords.

(replace-piece new-piece old-piece board)
gets a step that replaces old-piece with new-piece on board.

(path-contains-jumps? path)
tests whether any of the steps in path are jumps.

Let's build our referee. We will start by describing what simple steps



are possible from a given starting point in a given direction. The try-
step procedure identifies a potential next step, augmenting the given
path. If there is no such step, it returns #f.

(define (try-step piece board direction path)

  (let ((new-coords

         (coords+ (piece-coords piece) direction)))

    (and (is-position-on-board? new-coords board)

         (case (position-info new-coords board)

           ((unoccupied)

            (and (not (path-contains-jumps? path))

                 (cons (make-simple-move new-coords

                                         piece

                                         board)

                       path)))

           ((occupied-by-opponent)

            (let ((landing (coords+ new-coords direction)))

             (and (is-position-on-board? landing board)

                  (is-position-unoccupied? landing board)

                  (cons (make-jump landing

                                   new-coords 

                                   piece

                                   board)

                        path))))

          ((occupied-by-self) #f)

          (else (error "Unknown position info"))))))

The procedure looks at the position one step along the given direction;
if it's unoccupied, then it's possible to move there. (We explicitly test
whether this is a continuation of a jump, as that is not allowed in
checkers.) If the position is occupied by one of the player's pieces, no
move is possible. But if the position is occupied by an opponent's
piece, and the next position in that direction is unoccupied, then we
can jump over the opponent's piece and capture it.

We must try each possible direction for the piece. The procedure
compute-next-steps returns a list of possible next paths by
augmenting an existing path by one step.

(define (compute-next-steps piece board path)

  ;; filter-map drops false values

  (filter-map (lambda (direction)

                (try-step piece board direction path))

              (possible-directions piece)))



The rules of checkers mandate choosing a jump when one or more
is possible:

(define (evolve-paths piece board)

  (let ((paths (compute-next-steps piece board ’())))

    (let ((jumps (filter path-contains-jumps? paths)))

      (if (null? jumps)

          paths

          (evolve-jumps jumps)))))

And after an initial jump, we must test for other possible jumps:

(define (evolve-jumps paths)

  (append-map (lambda (path)

                (let ((paths

                       (let ((step (car path)))

                         (compute-next-steps (step-to step)

                                             (step-board step)

                                             path))))

                  (if (null? paths)

                      (list path)

                      ;; continue jumping if possible

                      (evolve-jumps paths))))

              paths))

That is the logic for generating the moves for a single piece. The
referee must do this for every piece and aggregate the results:

(define (generate-moves board)

  (crown-kings

    (mandate-jumps

      (append-map (lambda (piece)

                    (evolve-paths piece board))

                  (current-pieces board)))))

This procedure does two things in addition to generating the moves.
First, the aggregated moves may contain jumps for some pieces and
ordinary moves for others, in which case only the jumps are legal
moves.

(define (mandate-jumps paths)

  (let ((jumps (filter path-contains-jumps? paths)))

    (if (null? jumps)

        paths

        jumps)))



Second, if any piece reaches the opponent's home row, it must be
made a king.

(define (crown-kings paths)

  (map (lambda (path)

         (let ((piece (step-to (car path))))

           (if (should-be-crowned? piece)

               (cons (replace-piece (crown-piece piece)

                                    piece

                                    (step-board (car path)))

                     path)

               path)))

       paths))

Critique
This code is quite nice; it is surprisingly compact, and it is written in
terms of the domain model. However, the rules of checkers are
distributed throughout the code. The availability of a jump is
discovered in the procedure try-step, but the fact that jumps may
chain is in evolve-jumps. Also, the rule that if a jump is available a
jump must be taken is split between the procedures evolve-paths
and mandate-jumps. A more subtle problem is that the control
structure of the referee is interwoven with the rules. For example, the
accumulation of changes (steps in the path) is built into the control
structure, as is chaining of a multiple jump. The reason why the logic
for mandating jumps is in two places is that it is required by the
distribution of the control structure.

2.4.2 Factoring out the domain
Let's try to ameliorate the problems noted in the previous
implementation. Can we separate the domain model and control
structure from the rules of checkers?

A domain model
We can reuse the coordinates, pieces, and board from our monolithic
implementation, since they are largely unchanged. However, we will
eliminate the specific idea of king and non-king pieces, instead using a



symbolic type. This introduces two new operations:

(piece-type piece)
gets the type of piece.

(piece-new-type piece type)
gets a new piece identical to piece except that it has the given type.

We redefine should-be-crowned? and crown-piece to use the piece
type, so they behave the same as before, but they are no longer part of
the core domain model.

Although the procedure possible-directions is specific to
checkers, we will use it here, but only when defining the rules of
checkers. It is not part of the new domain model.

The step data structure is also specific to checkers, because it
specifies whether a step is a jump. We will replace it with a more
general structure called a change:

(make-change board piece flags)
creates a new change object. The flags argument is a list of symbols
that we can use to indicate changes of state such as capture of a piece.
The selectors get-board, get-piece, and get-flags can be used to
get the corresponding parts of a change.

Like the piece type, the change flags provide a way to add game-
specific features to the domain model without baking them in.

We will replace the path idea with a more abstract notion called a
partial move. A partial move consists of an initial board and piece,
together with zero or more changes. Our code uses the identifier pmove
for a partial move.

(initial-pmove board piece)
creates a pmove with no changes and no flags.

(is-pmove-empty? pmove)
tests whether pmove is empty: in other words, if it has no changes.

(is-pmove-finished? pmove)



tests whether pmove has been flagged as finished.

(current-board pmove)
returns the board from the most recent change in pmove; if there are
no changes, it returns the board passed as an argument to initial-
pmove.

(current-piece pmove)
returns the piece from the most recent change in the pmove; if there
are no changes, it returns the piece passed as an argument to
initial-pmove.

The next operations extend a pmove in different ways. When we say
“extends pmove by foo” we mean “extends pmove by adding a change
object that does foo.”

(new-piece-position coords pmove)
extends pmove by moving its piece to coords.

(update-piece procedure pmove)
extends pmove by replacing its piece with the result of calling
procedure on its piece.

(finish-move pmove)
extends pmove by adding a change object with a flag that specifies that
the move is complete. The result always satisfies the predicate is-
pmove-finished?.

In the implementation of section 2.4.1, we used the terms jumping
and capturing interchangeably. But capturing is a more general idea:
for example, in chess, capturing is done by displacing a piece rather
than jumping over it. We use a change flag to encode the act of
capturing a piece, and the following procedures to manage that flag:

(captures-pieces? pmove)
tests whether any pieces are captured by pmove.

(capture-piece-at coords pmove)



extends pmove by removing the piece at coords. The position specified
by coords must contain an opponent's piece. The operation also sets a
flag in the new change object saying that a piece was captured; the
resulting pmove always satisfies captures-pieces?.

An executive
To help separate the control structure from the rules of checkers we
build a rule executive that captures the control structure without
incorporating the specific content of the rules. In this kind of game
there are two kinds of rule. One kind, which we will call an evolution
rule, augments a pmove, possibly returning multiple derived pmoves.
The other kind, an aggregate rule, acts on a set of pmoves, eliminating
some that are not allowed or extending some to incorporate changes,
such as crowning a king.

Here is an executive that starts with some empty pmoves, one for
each of the player's pieces, and evolves these into a collection of
pmoves that represent finished moves. It then applies the aggregate
rules to the collection of finished pmoves, ultimately returning a
collection of the legal moves.

An evolution rule is implemented as a procedure that transforms a
given pmove into a collection of new pmoves, some of which may be
finished (satisfy is-pmove-finished?). The executive recursively
applies all of the evolution rules to the collection of pmoves until all of
them are finished.

An aggregate rule is implemented as a procedure that accepts a
collection of finished pmoves and produces a new collection. Each
aggregate rule is applied once, and there are no ordering constraints
between aggregate rules, so the executive can compose them together
into a single procedure that is the composite aggregate rule. If there
are no aggregate rules, then the composite simply returns its
argument.

(define (execute-rules initial-pmoves evolution-rules

                       aggregate-rules)

  ((reduce compose (lambda (x) x) aggregate-rules)

   (append-map (lambda (pmove)

                 (evolve-pmove pmove evolution-rules))

               initial-pmoves)))



(define (evolve-pmove pmove evolution-rules)

  (append-map (lambda (new-pmove)

                (if (is-pmove-finished? new-pmove)

                    (list new-pmove)

                    (evolve-pmove new-pmove evolution-rules)))

             (append-map (lambda (evolution-rule)

                           (evolution-rule pmove))

                         evolution-rules)))

An evolution rule is registered for use in the executive by the
procedure define-evolution-rule and an aggregate rule is
registered by the procedure define-aggregate-rule. Each rule has a
name, the game that it is registered in, and a procedure implementing
its behavior.

Rules of checkers
Here is a rule for simple moves. This looks for any unoccupied
adjacent position in a possible direction, and extends the pmove to
include a move to that position. After such a move, it is not legal to
continue moving, so we mark that pmove as finished.

(define-evolution-rule 'simple-move checkers

  (lambda (pmove)

    (if (is-pmove-empty? pmove)

        (get-simple-moves pmove)

        ’())))

(define (get-simple-moves pmove)

  (filter-map

   (lambda (direction)

     (let ((landing (compute-new-position direction 1 pmove))

           (board (current-board pmove)))

       (and (is-position-on-board? landing board)

            (is-position-unoccupied? landing board)

            (finish-move (new-piece-position landing pmove)))))

   (possible-directions (current-piece pmove))))

In get-simple-moves, the procedure compute-new-position gets
the proposed landing site of the piece possibly being moved, given the
direction and distance for the move. The procedure offset*
multiplies an offset and a number to get a new offset scaled by the



number.

(define (compute-new-position direction distance pmove)

  (coords+ (piece-coords (current-piece pmove))

           (offset* direction distance)))

The rule for jumps is similar, except that it must look for an
occupied position followed by an unoccupied position in a given
direction. When no jumps are possible, a pmove is finished.

(define-evolution-rule ’jump checkers

  (lambda (pmove)

    (let ((jumps (get-jumps pmove)))

      (cond ((not (null? jumps))

             jumps)

            ((is-pmove-empty? pmove)

             ’()) ; abandon this pmove

            (else

             (list (finish-move pmove)))))))

(define (get-jumps pmove)

  (filter-map

   (lambda (direction)

     (let ((possible-jump

            (compute-new-position direction 1 pmove))

           (landing (compute-new-position direction 2 pmove))

           (board (current-board pmove)))

       (and (is-position-on-board? landing board)

            (is-position-unoccupied? landing board)

            (is-position-occupied-by-opponent? possible-jump

                                               board)

            (capture-piece-at possible-jump

                              (new-piece-position landing

                                                  pmove)))))

   (possible-directions (current-piece pmove))))

Making kings is independent of other rules: just look at all the
completed moves and crown any non-king that is on the opponent's
home row.

(define-aggregate-rule ’coronation checkers

  (lambda (pmoves)

    (map (lambda (pmove)

           (let ((piece (current-piece pmove)))

             (if (should-be-crowned? piece)

                 (update-piece crown-piece pmove)



                 pmove)))

         pmoves)))

And finally, the rule mandating that a jump be taken when one or
more is available is done at the end by detecting that case and
throwing away all the non-jump moves.

(define-aggregate-rule 'require-jumps checkers

  (lambda (pmoves)

    (let ((jumps (filter captures-pieces? pmoves)))

      (if (null? jumps)

          pmoves

          jumps))))

Critique
The rule-based implementation of our referee solves the problems we
identified earlier. It removes the control structure from our program
and localizes it in the executive. As a consequence, the rules are
specific: each checkers rule is expressed by a single procedural rule.
The rules are not diffused as they were in the earlier implementation.

However, this comes at a cost: we must add applicability conditions
to each rule to prevent it being applied to pmoves for which it is
inappropriate.16 For example, the simple-move rule must exclude any
nonempty pmoves that it is given, because a nonempty pmove might
include one or more jumps, which cannot be continued with a simple
move. This is a general mis-feature of rule-based systems: every rule
must be able to accept the output of any rule; this is normally handled
by encoding the control state in the data the rules are applied to.



Exercise 2.12: A bit of chess

Using the same domain model we used for checkers, it is possible to
capture the rules of chess. There are several important differences,
besides the fact that chess involves many types of pieces. One
difference is that the range of motion of rooks, bishops, and queens is
limited only by obstruction. Another difference is that capture is by
displacement rather than jump. In this exercise we will consider only
rooks and knights; the remaining pieces are addressed in exercise 2.13.

a. Construct an analogous referee to generate the legal moves for a
rook. Don't try to implement the castling rule.

b. Augment your referee to model the behavior of a knight.



Exercise 2.13: More chess

Make a full implementation of the rules of chess.



Exercise 2.14: An advanced project

Choose some other domain, not a board game, and build an
implementation of the rules of some process using the rule executive
and a domain model of your design. This is not easy.



2.5 Summary

The techniques displayed and elaborated on in this chapter can be
helpful in the design and development of every large-scale system. It is
almost always to our advantage to build our systems using mix-and-
match interchangeable parts with well-defined interfaces.

In languages with higher-order procedures and lexical scoping, like
Scheme or Java, it is easy to make systems of combinators— standard
means of combination, such as compose—for a library of
interchangeable parts. And it is convenient to make parametric parts
that share a common interface specification. For example, if our
interface specification is procedures that take one argument and
return one value, then

(define (make-incrementer dx)

  (lambda (x) (+ x dx)))

defines a set of interchangeable incrementers. It is much harder to
make systems of combinators and libraries of combinable parts with
languages like C that do not have lexically scoped higher-order
procedures. But with careful planning and some effort it can be done.

When we are confronted with a system based on parts that do not
compose cleanly, such as regular expressions, it is often possible to
ameliorate the difficulties by metaprogramming. In that case we built
a new combinator-based language that we compiled to the regular
expression language, making a pleasant but longwinded alternative.
Our regular-expressions combinator language is a fine domain-specific
intermediate language for programs that need to match strings, but it
is not so nice as a scripting language for a user to type. For that
purpose we would want to design a clean and more concise syntax for
matching strings that can be compiled to a combinator-based
intermediate language.17

Wrappers are a common strategy for making old code useful in a
new context. We showed how programs that assumed a particular unit
system could be used with other unit systems, by building a system of



wrappers that automatically did the necessary unit conversions. To do
this we made a small domain-specific language for expressing unit
conversions that compiled into the appropriate wrapper.

But wrappers can be used for more than just adapters for old code.
We can wrap a procedure with a wrapper that checks input arguments
for reasonableness and checks that the output is a plausible result
given the inputs. If such checks fail, the wrapper can raise an error
signal. This “paranoid programming style” is a very powerful tool for
protecting a system from misuse and for debugging.

As illustrated with regular expressions and with unit conversions,
often the best way to attack a class of problems is to invent a domain-
specific language in which the solutions are easy to express. To explore
this strategy we divided the problem of generating the legal moves for
a board game into three individually extensible pieces: a domain
model, a control-structure executive, and the specific rules of the
game. The domain model provides a set of primitives that are
combined to make the rules, giving us a language for expressing the
rules. The application of the rules is sequenced by the control-
structure executive. This combination forms the essence of a domain-
specific language for expressing the rules of checkers-like board
games.

Every good language has primitives, means of combination of those
primitives, and means of abstraction for the combinations. The
examples shown in this chapter are embedded in Scheme, and thus are
able to use Scheme's powerful means of combination and abstraction.
But this is only the start. In chapter 5 we will transcend this
embedding strategy, using the powerful idea of metalinguistic
abstraction.

 

1 The generality of the domain model is an example of “Postel's law”—
see page 3.

2 There are some notable exceptions: the functional programming
extensions introduced by Java 8 directly capture useful
combinations. Functional programming languages, such as Lisp



and Haskell, have libraries of useful combination mechanisms.

3 Here things are simple, but in complex programs with many internal
procedures, descriptive names can make things easier to read and
understand. In MIT/GNU Scheme there is a minor advantage to
naming the procedure being returned here, because the debugger
can show this name for a procedure that would otherwise be
anonymous.

4 Documentation of hash table procedures in MIT/GNU Scheme can
be found in [51].

5 We thank Guy L. Steele Jr. for suggesting that we show this
decomposition.

6 Documentation of values, call-with-values, and let-values can be
found in [51] and [109].

7 Combinatory logic was invented by Moses Schönfinkel [108] and
developed by Haskell Curry [26] in the early 20th century. Their
goal had nothing to do with computation, but rather to simplify the
foundations of mathematics by eliminating the need for quantified
variables.

8 The MIT/GNU Scheme procedure-arity, used in get-arity, will
produce a numerical arity for the procedure returned, so we do not
need to put a sticky note on it.

9 We indicate that there is no maximum by calling r:repeat with #f
for max.

10 ERE Special Characters, [96] #tag 09 04 03

11 ERE Alternation, [96] #tag 09 04 07

12 EREs Matching Multiple Characters, [96] #tag 09 04 06

13 BREs Matching Multiple Characters, [96] #tag 09 03 06

14 BREs Matching Multiple Characters, [96] #tag 09 03 06



15 Note that the composition of two instances of meter-to-inch is a
sensible way to convert square meters to square inches. There are
unit conversions for which this is not true. For example, taking the
square of a kelvin-to-Celsius conversion doesn't make sense, even
though the numerical computation produces consistent results.
This is a consequence of the fact that Celsius temperature has an
offset from the physically meaningful kelvin temperature. Indeed,
the square of a Celsius temperature has no physical meaning.

16 However, because the rule executive explicitly handles finished
pmoves, we don't need to test for those in the rules.

17 SRFI 115 [110] is an interesting example.



3 
Variations on an Arithmetic Theme

In this chapter we introduce the extremely powerful but potentially
dangerous flexibility technique of predicate-dispatched generic
procedures. We start out in the relatively calm waters of arithmetic,
modulating the meanings of the operator symbols.

We first generalize arithmetic to deal with symbolic algebraic
expressions, and then to functions. We use a combinator system where
the elements being combined are packages of arithmetic operations.

But soon we want even more flexibility. So we invent dynamically
extensible generic procedures, where the applicability of a handler is
determined by predicates on the supplied arguments. This is very
powerful and great fun. Using generic procedures to extend the
arithmetic to operate on “differential objects,” we get automatic
differentiation with very little work!

Predicate dispatch is pretty expensive, so we investigate ways to
ameliorate that expense. In the process we invent a kind of tagged
data, where a tag is just a way of memoizing the value of a predicate.
To finish the chapter we demonstrate the power of generic procedures
with the design of a simple, but easy to elaborate, adventure game.



3.1 Combining arithmetics

Suppose we have a program that computes some useful numerical
results. It depends on the meanings of the arithmetic operators that
are referenced by the program text. These operators can be extended
to work on things other than the numbers that were expected by the
program. With these extensions the program may do useful things that
were not anticipated when the program was written. A common
pattern is a program that takes numerical weights and other
arguments and makes a linear combination by adding up the weighted
arguments. If the addition and multiplication operators are extended
to operate on tuples of numbers as well as on the original numbers, the
program can make linear combinations of vectors. This kind of
extension can work because the set of arithmetic operators is a well-
specified and coherent entity. Extensions of numerical programs with
more powerful arithmetic can work, unless the new quantities do not
obey the constraints that were assumed by the author of the program.
For example, multiplication of matrices does not commute, so
extension of a numerical program that depends on the fact that
multiplication of numbers is commutative will not work. We will
ignore this problem for now.

3.1.1 A simple ODE integrator
A differential equation is a description of how the state of a system
changes as an independent variable is varied; this is called the
evolution of the system's state.1 We can approximate the evolution of a
system's state by sampling the independent variable at various points
and approximating the state change at each sample point. This process
of approximation is called numerical integration.

Let's investigate the generality of numerical operations in a
numerical integrator for second-order ordinary differential equations.
We will use an integrator that samples its independent variable at
uniform intervals, each of which is called a step. Consider this
equation:



(3.1)

The essential idea is that a discrete approximation to the second
derivative of the unknown function is a linear combination of second
derivatives of some previous steps. The particular coefficients are
chosen by numerical analysis and are not of interest here.

(3.2)

where h is the step size and A is the array of magic coefficients.
For example, Stormer's integrator of order 2 is

(3.3)

To use this to compute the future of x we write a program. The
procedure returned by stormer-2 is an integrator for a given function
and step size, that given a history of values of x, produces an estimate
of the value of x at the next time, x(t + h). The procedures t and x
extract previous times and values of x from the history: (x 0

history) returns x(t), (x 1 history) returns x(t − h), and (x 2
history) returns x(t − 2h). We access the time of a step from a history
similarly: (t 1 history) returns t − h.

(define (stormer-2 F h)

  (lambda (history)

    (+ (* 2 (x 0 history))

       (* -1 (x 1 history))

       (* (/ (expt h 2) 12)

          (+ (* 13 (F (t 0 history) (x 0 history)))

             (* -2 (F (t 1 history) (x 1 history)))

             (F (t 2 history) (x 2 history)))))))

The procedure returned by stepper takes a history and returns a



new history advanced by h for the given integrator.

(define (stepper h integrator)

  (lambda (history)

    (extend-history (+ (t 0 history) h)

                    (integrator history)

                    history)))

The procedure stepper is used in the procedure evolver to
produce a procedure step that will advance a history by one step. The
step procedure is used in the procedure evolve that advances the
history by a given number of steps of size h. We explicitly use
specialized integer arithmetic here (the procedures named n:> and
n:-) for counting steps. This will allow us to use different types of
arithmetic for everything else without affecting simple counting.2

(define (evolver F h make-integrator)

  (let ((integrator (make-integrator F h)))

    (let ((step (stepper h integrator)))

      (define (evolve history n-steps)

        (if (n:> n-steps 0)

            (evolve (step history) (n:- n-steps 1))

            history))

      evolve)))

A second-order differential equation like equation 3.1 generally
needs two initial conditions to determine a unique trajectory: x(t0) and
x(t0) are sufficient to get x(t) for all t. But the Stormer multistep
integrator we are using requires three history values, x(t0), x(t0 − h),
and x(t0 − 2h), to compute the next value x(t0 + h). So to evolve the
trajectory with this integrator we must start with an initial history that
has three past values of x.

Consider the very simple differential equation:

In the form shown in equation 3.1 the right-hand side is:

(define (F t x) (- x))



Because all the solutions of this equation are linear combinations of
sinusoids, we can get the simple sine function by initializing the
history with three values of the sine function:

(define numeric-s0

  (make-initial-history 0 .01 (sin 0) (sin -.01) (sin -.02)))

where the procedure make-initial-history takes the following
arguments:

(make-initial-history t h x(t) x(t − h) x(t − 2h))

Using Scheme's built-in arithmetic, after 100 steps of size h = .01 we
get a good approximation to sin(1):

(x 0 ((evolver F .01 stormer-2) numeric-s0 100))

.8414709493275624

(sin 1)

.8414709848078965

3.1.2 Modulating arithmetic operators
Let's consider the possibility of modulating what is meant by addition,
multiplication, etc., for new data types unimagined by our example's
programmer. Suppose we change our arithmetic operators to operate
on and produce symbolic expressions rather than numerical values.
This can be useful in debugging purely numerical calculations, because
if we supply symbolic arguments we can examine the resulting
symbolic expressions to make sure that the program is calculating
what we intend it to. This can also be the basis of a partial evaluator
for optimization of numerical programs.

Here is one way to accomplish this goal. We introduce the idea of an
arithmetic package. An arithmetic package, or just arithmetic, is a
map from operator names to their operations (implementations). We
can install an arithmetic in the user's read-eval-print environment to
replace the default bindings of the operators named in the arithmetic
with the arithmetic's implementations.

The procedure make-arithmetic-1 generates a new arithmetic
package. It takes a name for the new arithmetic, and an operation-
generator procedure that given an operator name constructs an
operation, here a handler procedure, for that operator. The procedure



make-arithmetic-1 calls the operation-generator procedure with
each arithmetic operator, accumulating the results into a new
arithmetic package. For symbolic arithmetic, the operation is
implemented as a procedure that creates a symbolic expression by
consing the operator name onto the list of its arguments.

(define symbolic-arithmetic-1

  (make-arithmetic-1 'symbolic

    (lambda (operator)

      (lambda args (cons operator args)))))

To use this newly defined arithmetic, we install it. This redefines the
arithmetic operators to use this arithmetic:3

(install-arithmetic! symbolic-arithmetic-1)

install-arithmetic! changes the values of the user's global
variables that are the names of the arithmetic operators defined in the
arithmetic to their values in that arithmetic. For example, after this
install:

(+ ’a ’b)

(+ a b)

(+ 1 2)

(+ 1 2)

Now we can observe the result of taking one step of the Stormer
evolution:4 5

(pp (x 0

       ((evolver F ’h stormer-2)

        (make-initial-history 't ’h ’xt ’xt-h ’xt-2h)

        1)))

(+ (+ (* 2 xt) (* -1 xt-h))

   (* (/ (expt h 2) 12)

      (+ (+ (* 13 (negate xt)) (* -2 (negate xt-h)))

         (negate xt-2h))))

We could easily produce simplified expressions by replacing the
cons in symbolic-arithmetic-1 with an algebraic simplifier, and
then we would have a symbolic manipulator. (We will explore
algebraic simplification in section 4.2.)



This transformation was ridiculously easy, and yet our original
design didn't make any provisions for symbolic computation. We
could just as easily add support for vector arithmetic, matrix
arithmetic, etc.

Problems with redefining operators
The ability to redefine operators after the fact gives both extreme
flexibility and ways to make whole new classes of bugs! (We
anticipated such a problem in the evolver procedure and avoided it
by using the special arithmetic operators n:> and n:- for counting
steps.)

There are more subtle problems. A program that depends on the
exactness of operations on integers may not work correctly for inexact
floating-point numbers. This is exactly the risk that comes with the
evolution of biological or technological systems— some mutations will
be fatal! On the other hand, some mutations will be extremely
valuable. But that risk must be balanced against the cost of narrow and
brittle construction.

Indeed, it is probably impossible to prove very much about a
program when the primitive procedures can be redefined, except that
it will work when restricted to the types it was defined for. This is an
easy but dangerous path for generalization.

3.1.3 Combining arithmetics
The symbolic arithmetic cannot do numerical calculation, so we have
broken our integration example by replacing the operator definitions.
We really want an operator's action to depend on its arguments: for
example, numerical addition for (+ 1 2) but building a list for (+ ’a
’b). Thus the arithmetic packages must be able to determine which
handler is appropriate for the arguments tendered.

An improved arithmetic abstraction
By annotating each operation with an applicability specification, often
shortened to just an applicability, we can combine different kinds of
arithmetic. For example, we can combine symbolic and numeric



arithmetic so that a combined operation can determine which
implementation is appropriate for its arguments.

An applicability specification is just a list of cases, each of which is a
list of predicates, such as number? or symbolic?. A procedure is
deemed applicable to a sequence of arguments if the arguments satisfy
one of the cases—that is, if each predicate in the case is true of the
corresponding argument. For example, for binary arithmetic
operators, we would like the numeric operations to be applicable in
just the case (number? number?) and the symbolic operations to be
applicable in these cases: ((number? symbolic?) (symbolic?

number?) (symbolic? symbolic?)).
We use make-operation to make an operation that includes an

applicability for the handler procedure, like this:

(define (make-operation operator applicability procedure)

  (list ’operation operator applicability procedure))

It is then possible to get the applicability for an operation:

(define (operation-applicability operation)

  (caddr operation))

We introduce an abstraction for writing applicability information
for an operation. The procedure all-args takes two arguments, the
first being the number of arguments that the operation accepts (its
arity, as on page 26), and the second being a predicate that must be
true of each argument. It returns an applicability specification that can
be used to determine if the operation is applicable to the arguments
supplied to it. In a numeric arithmetic, each operation takes numbers
for each of its arguments.

Using all-args we can implement an operation constructor for the
simplest operations:

(define (simple-operation operator predicate procedure) 

  (make-operation operator

                  (all-args (operator-arity operator)

                            predicate)

                  procedure))

We will also find it useful to have a domain predicate that is true for
the objects (such as functions or matrices) that a given arithmetic's



operations take as arguments—for example, number? for numeric
arithmetic. To support this more elaborate idea we will create a
constructor make-arithmetic for arithmetic packages. The procedure
make-arithmetic is like make-arithmetic-1 (see page 71) but has
additional arguments.

(make-arithmetic  name

                  domain-predicate

                  base-arithmetic-packages

                  map-of-constant-name-to-constant

                  map-of-operator-name-to-operation)

An arithmetic package produced by make-arithmetic has a name that
is useful for debugging. It has the domain predicate noted above. It
has a list of arithmetic packages, called the bases, that the new
arithmetic will be built from. In addition, the arithmetic will contain a
set of named constants, and a set of operators along with their
corresponding operations. The final two arguments are used to
generate these sets.

An example of the use of a base arithmetic is vectors. A vector is
represented as an ordered sequence of coordinates: consequently an
arithmetic on vectors is defined in terms of arithmetic on its
coordinates. So the base arithmetic for a vector arithmetic is the
appropriate arithmetic for the vector's coordinates. A vector arithmetic
with numeric coordinates will use a numeric arithmetic as its base,
while a vector arithmetic with symbolic coordinates will use a symbolic
arithmetic as its base. For brevity, we often use the term “over” to
specify the base, as in “vectors over numbers” or “vectors over
symbols.”

The base arithmetics also determine the constants and operators
that the derived arithmetic will define. The defined constants will be
the union of the constants defined by the bases, and the defined
operators will be the union of their operators. If there are no bases,
then standard sets of constant and operator names will be defined.

Using these new capabilities, we can define a numeric arithmetic
with applicability information. Since numeric arithmetic is built on the
Scheme substrate, the appropriate handler for the operator for Scheme
number arguments is just the value of the operator symbol for the
Scheme implementation. Also, certain symbols, such as the identity



constants for addition and multiplication, are specially mapped.

(define numeric-arithmetic

  (make-arithmetic ’numeric number? ’()

    (lambda (name)                ;constant generator

      (case name

        ((additive-identity) 0)

        ((multiplicative-identity) 1)

        (else (default-object))))

    (lambda (operator)            ;operation generator

      (simple-operation operator number?

         (get-implementation-value

            (operator->procedure-name operator))))))

The last two lines of this code find the procedure defined by the
Scheme implementation that is named by the operator.6

We can similarly write the symbolic-extender constructor to
construct a symbolic arithmetic based on a given arithmetic.

(define (symbolic-extender base-arithmetic)

  (make-arithmetic ’symbolic symbolic? (list base-arithmetic)

    (lambda (name base-constant)        ;constant generator

      base-constant)

    (let ((base-predicate

           (arithmetic-domain-predicate base-arithmetic)))

      (lambda (operator base-operation) ;operation generator

        (make-operation operator

                        (any-arg (operator-arity operator)

                                 symbolic?

                                 base-predicate)

                        (lambda args

                          (cons operator args)))))))

One difference between this and the numeric arithmetic is that the
symbolic arithmetic is applicable whenever any argument is a
symbolic expression.7 This is indicated by the use of any-arg rather
than all-args; any-arg matches if at least one of the arguments
satisfies the predicate passed as the second argument, and all the
other arguments satisfy the predicate passed as the third argument.8
Also notice that this symbolic arithmetic is based on a provided base-
arithmetic, which will allow us to build a variety of such arithmetics.

Applicability specifications are not used as guards on the handlers:
they do not prevent the application of a handler to the wrong



arguments. The applicability specifications are used only to
distinguish among the possible operations for an operator when
arithmetics are combined, as explained below.

A combinator for arithmetics
The symbolic and numeric arithmetics are of the same shape, by
construction. The symbolic-extender procedure produces an
arithmetic with the same operators as the base arithmetic it is given.
Making a combinator language for building composite arithmetics
from parts might be a good approach.

The procedure add-arithmetics, below, is a combinator for
arithmetics. It makes a new arithmetic whose domain predicate is the
disjunction of the given arithmetics’ domain predicates, and each of
whose operators is mapped to the union of the operations for the given
arithmetics.9

(define (add-arithmetics . arithmetics)

  (add-arithmetics* arithmetics))

(define (add-arithmetics* arithmetics)

  (if (n:null? (cdr arithmetics))

      (car arithmetics)  ;only one arithmetic

      (make-arithmetic ’add

                       (disjoin*

                        (map arithmetic-domain-predicate

                             arithmetics))

                       arithmetics

                       constant-union

                       operation-union)))

The third argument to make-arithmetic is a list of the arithmetic
packages being combined. The arithmetic packages must be
compatible in that they specify operations for the same named
operators. The fourth argument is constant-union, which combines
multiple constants. Here this selects one of the argument constants for
use in the combined arithmetic; later we will elaborate on this.10

(define (constant-union name . constants)

  (let ((unique

         (remove default-object?

                 (delete-duplicates constants eqv?))))



    (if (n:pair? unique)

        (car unique)

        (default-object))))

The last argument is operation-union, which constructs the
operation for the named operator in the resulting arithmetic. An
operation is applicable if it is applicable in any of the arithmetics that
were combined.

(define (operation-union operator . operations)

  (operation-union* operator operations))

(define (operation-union* operator operations)

  (make-operation operator

                  (applicability-union*

                   (map operation-applicability operations))

                  (lambda args

                    (operation-union-dispatch operator

                                              operations

                                              args))))

The procedure operation-union-dispatch must determine the
operation to use based on the arguments supplied. It chooses the
operation from the given arithmetics that is appropriate to the given
arguments and applies it to the arguments. If more than one of the
given arithmetics has an applicable operation, the operation from the
first arithmetic in the arguments to add-arithmetics is chosen.

(define (operation-union-dispatch operator operations args)

  (let ((operation

         (find (lambda (operation)

                 (is-operation-applicable? operation args))

               operations)))

    (if (not operation)

        (error "Inapplicable operation:" operator args))

    (apply-operation operation args)))

A common pattern is to combine a base arithmetic with an extender
on that arithmetic. The combination of numeric arithmetic and a
symbolic arithmetic built on numeric arithmetic is such a case. So we
provide an abstraction for that pattern:

(define (extend-arithmetic extender base-arithmetic)

  (add-arithmetics base-arithmetic



                   (extender base-arithmetic)))

We can use extend-arithmetic to combine the numeric arithmetic
and the symbolic arithmetic. Since the applicability cases are disjoint—
all numbers for numeric arithmetic and at least one symbolic
expression for symbolic arithmetic—the order of arguments to add-
arithmetics is irrelevant here, except for possible performance
issues.

(define combined-arithmetic

  (extend-arithmetic symbolic-extender numeric-arithmetic))

(install-arithmetic! combined-arithmetic)

Let's try the composite arithmetic:

(+ 1 2)

3

(+ 1 ’a)

(+ 1 a)

(+ ’a 2)

(+ a 2)

(+ ’a ’b)

(+ a b)

The integrator still works numerically (compare page 70):

(define numeric-s0

  (make-initial-history 0 .01 (sin 0) (sin -.01) (sin -.02)))

(x 0 ((evolver F .01 stormer-2) numeric-s0 100))

.8414709493275624

It works symbolically (compare page 72):

(pp (x 0

       ((evolver F ’h stormer-2)

        (make-initial-history 't ’h ’xt ’xt-h ’xt-2h)

        1)))

(+ (+ (* 2 xt) (* -1 xt-h))

   (* (/ (expt h 2) 12)

      (+ (+ (* 13 (negate xt)) (* -2 (negate xt-h)))

         (negate xt-2h))))



And it works in combination, with numeric history but symbolic step
size h:

(pp (x 0 ((evolver F ’h stormer-2) numeric-s0 1)))

(+ 9.999833334166664e-3

   (* (/ (expt h 2) 12)

      -9.999750002487318e-7))

Notice the power here. We have combined code that can do
symbolic arithmetic and code that can do numeric arithmetic. We have
created a system that can do arithmetic that depends on both abilities.
This is not just the union of the two abilities— it is the cooperation of
two mechanisms to solve a problem that neither could solve by itself.

3.1.4 Arithmetic on functions
Traditional mathematics extends arithmetic on numerical quantities
to many other kinds of objects. Over the centuries “arithmetic” has
been extended to complex numbers, vectors, linear transformations
and their representations as matrices, etc. One particularly revealing
extension is to functions. We can combine functions of the same type
using arithmetic operators:

(f + g)(x) = f (x) + g(x)
(f − g)(x) = f (x) − g(x)
(fg)(x) = f (x)g(x)
(f/g)(x) = f (x)/g(x)
⋮

The functions that are combined must have the same domain and
codomain, and an arithmetic must be defined on the codomain.

The extension to functions is not hard. Given an arithmetic package
for the codomain of the functions that we wish to combine, we can
make an arithmetic package that implements the function arithmetic,
assuming that functions are implemented as procedures.

(define (pure-function-extender codomain-arithmetic)

  (make-arithmetic ’pure-function function?

                   (list codomain-arithmetic)

    (lambda (name codomain-constant)    ; *** see below



      (lambda args codomain-constant))

    (lambda (operator codomain-operation)

      (simple-operation operator function?

        (lambda functions

          (lambda args

            (apply-operation codomain-operation

                             (map (lambda (function)

                                    (apply function args))

                                  functions))))))))

Notice that the constant generator (with comment ***) must produce
a constant function for each codomain constant. For example, the
additive identity for functions must be the function of any number of
arguments that returns the codomain additive identity. Combining a
functional arithmetic with the arithmetic that operates on the
codomains makes a useful package:

(install-arithmetic!

  (extend-arithmetic pure-function-extender

                     numeric-arithmetic))

((+ cos sin) 3)

-.8488724885405782

(+ (cos 3) (sin 3))

-.8488724885405782

By building on combined-arithmetic we can get more interesting
results:

(install-arithmetic!

  (extend-arithmetic pure-function-extender

                     combined-arithmetic))

((+ cos sin) 3)

-.8488724885405782

((+ cos sin) ’a)

(+ (cos a) (sin a))

(* ’b ((+ cos sin) (+ (+ 1 2) ’a)))

(* b (+ (cos (+ 3 a)) (sin (+ 3 a))))

The mathematical tradition also allows one to mix numerical
quantities with functions by treating the numerical quantities as
constant functions of the same type as the functions they will be



combined with.

(3.4)

We can implement the coercion of numerical quantities to constant
functions quite easily, by minor modifications to the procedure pure-
function-extender:

(define (function-extender codomain-arithmetic)

  (let ((codomain-predicate

         (arithmetic-domain-predicate codomain-arithmetic)))

    (make-arithmetic ’function

                     (disjoin codomain-predicate function?)

                     (list codomain-arithmetic)

      (lambda (name codomain-constant)

        codomain-constant)
      (lambda (operator codomain-operation)

        (make-operation operator
                        (any-arg (operator-arity operator)

                                 function?

                                 codomain-predicate)

          (lambda things

            (lambda args

              (apply-operation codomain-operation

                 (map (lambda (thing)

                        ;; here is the coercion:

                        (if (function? thing)

                            (apply thing args)

                            thing))

                      things)))))))))

To allow the coercion of codomain quantities, such as numbers, to
constant functions, the domain of the new function arithmetic must
contain both the functions and the elements of the codomain of the
functions (the possible values of the functions). The operator
implementation is applicable if any of the arguments is a function; and
functions are applied to the arguments that are given. Note that the
constant generator for the make-arithmetic doesn't need to rewrite
the codomain constants as functions, since the constants can now be
used directly.

With this version we can



(install-arithmetic!

  (extend-arithmetic function-extender combined-arithmetic))

((+ 1 cos) ’a)

(+ 1 (cos a))

(* ’b ((+ 4 cos sin) (+ (+ 1 2) ’a)))

(* b (+ 4 (cos (+ 3 a)) (sin (+ 3 a))))

This raises an interesting problem: we have symbols, such as a and
b, that represent literal numbers, but nothing to represent literal
functions. For example, if we write

(* ’b ((+ ’c cos sin) (+ 3 ’a)))

our arithmetic will treat c as a literal number. But we might wish to
have c be a literal function that combines as a function. It's difficult to
do this with our current design, because c carries no type information,
and the context is insufficient to distinguish usages.

But we can make a literal function that has no properties except for
a name. Such a function just attaches its name to the list of its
arguments.

(define (literal-function name)

  (lambda args

    (cons name args)))

With this definition we can have a literal function c correctly
combine with other functions:

(* ’b ((+ (literal-function ’c) cos sin) (+ (+ 1 2) ’a)))

(* b (+ (+ (c (+ 3 a)) (cos (+ 3 a))) (sin (+ 3 a))))

This is a narrow solution that handles a useful case.

3.1.5 Problems with combinators
The arithmetic structures we have been building up to now are an
example of the use of combinators to build complex structures by
combining simpler ones. But there are some serious drawbacks to
building this system using combinators. First, some properties of the
structure are determined by the means of combination. For example,
we pointed out that add-arithmetics prioritized its arguments, such



that their order can matter. Second, the layering implicit in this
design, such that the codomain arithmetic must be constructed prior
to the function arithmetic, means that it's impossible to augment the
codomain arithmetic after the function arithmetic has been
constructed. Finally, we might wish to define an arithmetic for
functions that return functions. This cannot be done in a general way
within this framework, without introducing another mechanism for
self reference, and self reference is cumbersome to arrange.

Combinators are powerful and useful, but a system built of
combinators is not very flexible. One problem is that the shapes of the
parts must be worked out ahead of time: the generality that will be
available depends on the detailed plan for the shapes of the parts, and
there must be a localized plan for how the parts are combined. This is
not a problem for a well-understood domain, such as arithmetic, but it
is not appropriate for open-ended construction. In section 3.2 we will
see how to add new kinds of arithmetic incrementally, without having
to decide where they go in a hierarchy, and without having to change
the existing parts that already work.

Other problems with combinators are that the behavior of any part
of a combinator system must be independent of its context. A powerful
source of flexibility that is available to a designer is to build systems
that do depend upon their context. By varying the context of a system
we can obtain variation of the behavior. This is quite dangerous,
because it may be hard to predict how a variation will behave.
However, carefully controlled variations can be useful.



Exercise 3.1: Warmup with boolean arithmetic
In digital design the boolean operations and, or, and not are written
with the operators *, +, and -, respectively.

There is a Scheme predicate boolean? that is true only of #t and #f.
Use this to make a boolean arithmetic package that can be combined
with the arithmetics we have. Note that all other arithmetic operators
are undefined for booleans, so the appropriate result of applying
something like cos to a boolean is to report an error.

The following template could help get you started:

(define boolean-arithmetic

  (make-arithmetic ’boolean boolean? ’()

    (lambda (name)

      (case name

        ((additive-identity) #f)

        ((multiplicative-identity) #t)

        (else (default-object))))
    (lambda (operator)

      (let ((procedure

             (case operator

               ((+) <...>)

               ((-) <...>)

               ((*) <...>)

               ((negate) <...>)

               (else

                (lambda args
                  (error "Operator undefined in Boolean"

                         operator))))))

        (simple-operation operator boolean? procedure)))))

In digital design the operator - is typically used only as a unary
operator and is realized as negate. When an arithmetic is installed, the
binary operators +, *, -, and / are generalized to be n-ary operators.

The unary application (- operand) is transformed by the installer
into (negate operand). Thus to make - work, you will need to define
the unary boolean operation for the operator negate.



Exercise 3.2: Vector arithmetic
We will make and install an arithmetic package on geometric vectors.
This is a big assignment that will bring to the surface many of the
difficulties and inadequacies of the system we have developed so far.

a. We will represent a vector as a Scheme vector of numerical
quantities. The elements of a vector are coordinates relative to
some Cartesian axes. There are a few issues here. Addition (and
subtraction) is defined only for vectors of the same dimension, so
your arithmetic must know about dimensions. First, make an
arithmetic that defines only addition, negation, and subtraction of
vectors over a base arithmetic of operations applicable to the
coordinates of vectors. Applying any other operation to a vector
should report an error. Hint: The following procedures will be
helpful:

(define (vector-element-wise element-procedure)

  (lambda vecs    ; Note: this takes multiple vectors

    (ensure-vector-lengths-match vecs)

    (apply vector-map element-procedure vecs)))

(define (ensure-vector-lengths-match vecs)

  (let ((first-vec-length (vector-length (car vecs))))

    (if (any (lambda (v)

               (not (n:= (vector-length v)

                         first-vec-length)))

             vecs)

        (error "Vector dimension mismatch:" vecs))))

The use of apply here is subtle. One way to think about it is to imagine
that the language supported an ellipsis like this:

(define (vector-element-wise element-procedure)

  (lambda (v1 v2 ...)

    (vector-map element-procedure v1 v2 ...)))

Build the required arithmetic and show that it works for numerical
vectors and for vectors with mixed numerical and symbolic
coordinates.



b. Your vector addition required addition of the coordinates. The
coordinate addition procedure could be the value of the + operator
that will be made available in the user environment by install-
arithmetic!, or it could be the addition operation from the base
arithmetic of your vector extension. Either of these would satisfy
many tests, and using the installed addition may actually be more
general. Which did you use? Show how to implement the other
choice. How does this choice affect your ability to make future
extensions to this system? Explain your reasoning.

Hint: A nice way to control the interpretation of operators in a
procedure is to provide the procedure to use for each operator as
arguments to a “maker procedure” that returns the procedure needed.
For example, to control the arithmetic operations used in vector-
magnitude one might write:

(define (vector-magnitude-maker + * sqrt)

  (let ((dot-product (dot-product-maker + *)))

    (define (vector-magnitude v)

      (sqrt (dot-product v v)))

    vector-magnitude))

c. What shall we do about multiplication? First, for two vectors it is
reasonable to define multiplication to be their dot product. But
there is a bit of a problem here. You need to be able to use both the
addition and multiplication operations, perhaps from the
arithmetic on the coordinates. This is not hard to solve. Modify
your vector arithmetic to define multiplication of two vectors as
their dot product. Show that your dot product works.

d. Add vector magnitude to your vector arithmetic, extending the
numerical operator magnitude to give the length of a vector. The
code given above is most of the work!

e. Multiplication of a vector by a scalar or multiplication of a scalar
by a vector should produce the scalar product (the vector with each
coordinate multiplied by the scalar). So multiplication can mean
either dot product or scalar product, depending on the types of its
arguments. Modify your vector arithmetic to make this work. Show
that your vector arithmetic can handle both dot product and scalar



product. Hint: The operation-union procedure on page 78
enables a very elegant way to solve this problem.



Exercise 3.3: Ordering of extensions
Consider two possible orderings for combining your vector extension
(exercise 3.2) with the existing arithmetics:

(define vec-before-func

 (extend-arithmetic

  function-extender

  (extend-arithmetic vector-extender combined-arithmetic)))

(define func-before-vec

 (extend-arithmetic

  vector-extender

  (extend-arithmetic function-extender combined-arithmetic)))

How does the ordering of extensions affect the properties of the
resulting arithmetic? The following procedure makes points on the
unit circle:

(define (unit-circle x)

  (vector (sin x) (cos x)))

If we execute each of the following expressions in environments
resulting from installing vec-before-func and func-before-vec:

((magnitude unit-circle) ’a)

((magnitude (vector sin cos)) ’a)

The result (unsimplified) should be:

(sqrt (+ (* (sin a) (sin a)) (* (cos a) (cos a))))

However, each of these expressions fails with one of the two orderings
of the extensions. Is it possible to make an arithmetic for which both
evaluate correctly? Explain.



3.2 Extensible generic procedures

Systems built by combinators, as in section 3.1, result in beautiful
diamond-like systems. This is sometimes the right idea, and we will
see it arise again, but it is very hard to add to a diamond. If a system is
built as a ball of mud, it is easy to add more mud.11

One organization for a ball of mud is a system erected on a
substrate of extensible generic procedures. Modern dynamically typed
programming languages, such as Lisp, Scheme, and Python, usually
have built-in arithmetic that is generic over a variety of types of
numerical quantities, such as integers, floats, rationals, and complex
numbers [115, 64, 105]. But systems built on these languages are
usually not easily extensible after the fact.

The problems we indicated in section 3.1.5 are the result of using
the combinator add-arithmetics. To solve these problems we will
abandon that combinator. However, the arithmetic package
abstraction is still useful, as is the idea of an extender. We will build an
arithmetic package in which the operations use generic procedures
that can be dynamically augmented with new behavior. We can then
extend the generic arithmetic and add the extensions to the generic
arithmetic.12

We will start by implementing generic procedures, which are
procedures that can be dynamically extended by adding handlers after
the generic procedures are defined. A generic procedure is a
dispatcher combined with a set of rules, each of which describes a
handler that is appropriate for a given set of arguments. Such a rule
combines a handler with its applicability.

Let's examine how this might work, by defining a generic procedure
named plus that works like addition with numeric and symbolic
quantities:

(define plus (simple-generic-procedure ’plus 2 #f))

(define-generic-procedure-handler plus

  (all-args 2 number?)

  (lambda (a b) (+ a b)))



(define-generic-procedure-handler plus

  (any-arg 2 symbolic? number?)

  (lambda (a b) (list ’+ a b)))

(plus 1 2)

3

(plus 1 ’a)

(+ 1 a)

(plus ’a 2)

(+ a 2)

(plus ’a ’b)

(+ a b)

The procedure simple-generic-procedure takes three arguments:
The first is an arbitrary name to identify the procedure when
debugging; the second is the procedure's arity. The third argument is
used to provide a default handler; if none is supplied (indicated by #f),
then if no specific handler is applicable an error is signaled. Here plus
is bound to the new generic procedure returned by simple-generic-
procedure. It is a Scheme procedure that can be called with the
specified number of arguments.

The procedure define-generic-procedure-handler adds a rule
to an existing generic procedure. Its first argument is the generic
procedure to be extended; the second argument is an applicability
specification (as on page 73) for the rule being added; and the third
argument is the handler for arguments that satisfy that specification.

(define-generic-procedure-handler generic-procedure

                                  applicability

                                  handler-procedure)

It is often necessary to specify a rule in which different arguments are
of different types. For example, to make a vector arithmetic package
we need to specify the interpretation of the * operator. If both
arguments are vectors, the appropriate handler computes the dot
product. If one argument is a scalar and the other is a vector, then the
appropriate handler scales the vector elements by the scalar. The
applicability argument is the means by which this is accomplished.



The simple-generic-procedure constructor we used above to
make the generic procedure plus is created with the procedure
generic-procedure-constructor

(define simple-generic-procedure

  (generic-procedure-constructor make-simple-dispatch-store))

where make-simple-dispatch-store is a procedure that
encapsulates a strategy for saving, retrieving, and choosing a handler.

The generic-procedure-constructor takes a dispatch-store
constructor and produces a generic-procedure constructor that itself
takes three arguments—a name that is useful in debugging, an arity,
and a default handler to be used if there are no applicable handlers. If
the default handler argument is #f, the default handler signals an
error:

((generic-procedure-constructor dispatch-store-constructor)

 name

 arity

 default-handler)

The reason why generic procedures are made in this way is that we will
need families of generic procedures that differ in the choice of dispatch
store.

In section 3.2.3, we will see one way to implement this mechanism.
But first let's see how to use it.

3.2.1 Generic arithmetic
We can use this new generic-procedure mechanism to build arithmetic
packages in which the operators map to operations that are
implemented as generic procedures. This will allow us to make self-
referential structures. For example, we might want to make a generic
arithmetic that includes vector arithmetic where both the vectors and
the components of a vector are manipulated by the same generic
procedures. We could not build such a structure using just add-
arithmetics introduced earlier.

(define (make-generic-arithmetic dispatch-store-maker)

  (make-arithmetic ’generic any-object? ’()

    constant-union



    (let ((make-generic-procedure

           (generic-procedure-constructor

            dispatch-store-maker)))

      (lambda (operator)

        (simple-operation operator

                any-object?

                (make-generic-procedure

                 operator

                 (operator-arity operator)

                 #f))))))

The make-generic-arithmetic procedure creates a new arithmetic.
For each arithmetic operator, it constructs an operation that is
applicable to any arguments and is implemented by a generic
procedure. (The predicate any-object? is true of anything.) We can
install this arithmetic in the usual way.

But first, let's define some handlers for the generic procedures. It's
pretty simple to do now that we have the generic arithmetic object. For
example, we can grab the operations and constants from any already-
constructed arithmetic.

(define (add-to-generic-arithmetic! generic-arithmetic

                                    arithmetic)

  (add-generic-arith-constants! generic-arithmetic

                                arithmetic)

  (add-generic-arith-operations! generic-arithmetic

                                 arithmetic))

This takes a generic arithmetic package and an ordinary arithmetic
package with the same operators. It merges constants into the generic
arithmetic using constant-union. And for each operator of the given
arithmetic it adds a handler to the corresponding generic procedure.

Adding a handler for a particular operator uses the standard generic
procedure mechanism, extracting the necessary applicability and
procedure from the arithmetic's operation.

(define (add-generic-arith-operations! generic-arithmetic

                                       arithmetic)

  (for-each

   (lambda (operator)

     (let ((generic-procedure

            (simple-operation-procedure

             (arithmetic-operation operator

                                   generic-arithmetic)))



           (operation

            (arithmetic-operation operator arithmetic)))

       (define-generic-procedure-handler

           generic-procedure

           (operation-applicability operation)

           (operation-procedure operation))))

   (arithmetic-operators arithmetic)))

The add-generic-arith-operations! procedure finds, for each
operator in the given arithmetic, the generic procedure that must be
augmented. It then defines a handler for that generic procedure that is
the handler for that operator in the given arithmetic, using the
applicability for that handler in the given arithmetic.

The code for adding the constants from an arithmetic to the generic
arithmetic is similar. For each constant name in the generic arithmetic
it finds the entry in the association of names to constant values in the
generic arithmetic. It then replaces the constant value with the
constant-union of the existing constant and the constant it got for
that same name from the given arithmetic.

(define (add-generic-arith-constants! generic-arithmetic

                                      arithmetic)

  (for-each

   (lambda (name)

     (let ((binding

            (arithmetic-constant-binding name

                                         generic-arithmetic))

           (element

            (find-arithmetic-constant name arithmetic)))

       (set-cdr! binding

                 (constant-union name

                                 (cdr binding)

                                 element))))

   (arithmetic-constant-names generic-arithmetic)))

Fun with generic arithmetics
We can add many arithmetics to a generic arithmetic to give it
interesting behavior:

(let ((g

       (make-generic-arithmetic make-simple-dispatch-store)))

  (add-to-generic-arithmetic! g numeric-arithmetic)

  (add-to-generic-arithmetic! g



    (function-extender numeric-arithmetic))

  (add-to-generic-arithmetic! g

    (symbolic-extender numeric-arithmetic))

  (install-arithmetic! g))

This produces a generic arithmetic that combines numeric arithmetic
with symbolic arithmetic over numeric arithmetic and function
arithmetic over numeric arithmetic:

(+ 1 3 ’a ’b)

(+ (+ 4 a) b)

And we can even run some more complex problems, as on page 79:

(pp (x 0 ((evolver F ’h stormer-2) numeric-s0 1)))

(+ 9.999833334166664e-3

   (* (/ (expt h 2) 12)

      -9.999750002487318e-7))

As before, we can mix symbols and functions:

(* ’b ((+ cos sin) 3))

(* b -.8488724885405782)

but the following will signal an error, trying to add the symbolic
quantities (cos a) and (sin a) as numbers:

(* ’b ((+ cos sin) ’a))

We get this error because cos and sin are numeric operators, like +.
Since we have symbolic arithmetic over numeric arithmetic, these
operators are extended so that for symbolic input, here a, they produce
symbolic outputs, (cos a) and (sin a). We also added function
arithmetic over numeric arithmetic, so if functions are numerically
combined (here by +) their outputs may be combined only if the
outputs are numbers. But the symbolic results cannot be added
numerically. This is a consequence of the way we built the arithmetic
g.

But there is magic in generic arithmetic. It can be closed: all
extensions to the generic arithmetic can be made over the generic
arithmetic!

(let ((g



       (make-generic-arithmetic make-simple-dispatch-store)))

  (add-to-generic-arithmetic! g numeric-arithmetic)

  (extend-generic-arithmetic! g symbolic-extender)

  (extend-generic-arithmetic! g function-extender)

  (install-arithmetic! g))

Here we use a new procedure extend-generic-arithmetic! that
captures a common pattern.

(define (extend-generic-arithmetic! generic-arithmetic

                                    extender)

  (add-to-generic-arithmetic! generic-arithmetic

      (extender generic-arithmetic)))

Now we can use complex mixed expressions, because the functions are
defined over the generic arithmetic:

(* ’b ((+ ’c cos sin) (+ 3 ’a)))

(* b (+ (+ c (cos (+ 3 a))) (sin (+ 3 a))))

We can even use functions that return functions:

(((+ (lambda (x) (lambda (y) (cons x y)))

      (lambda (x) (lambda (y) (cons y x))))

  3)

4)

(+ (3 . 4) (4 . 3))

So perhaps we have achieved nirvana?

3.2.2 Construction depends on order!
Unfortunately, there is a severe dependence on the order in which
rules are added to the generic procedures. This is not surprising,
because the construction of the generic procedure system is by
assignment. We can see this by changing the order of construction:

(let ((g

       (make-generic-arithmetic make-simple-dispatch-store)))

  (add-to-generic-arithmetic! g numeric-arithmetic)

  (extend-generic-arithmetic! g function-extender) ;*

  (extend-generic-arithmetic! g symbolic-extender) ;*

  (install-arithmetic! g))

and then we will find that the example



(* ’b ((+ ’c cos sin) (+ 3 ’a)))

which worked in the previous arithmetic, fails because the symbolic
arithmetic captures (+ ’c cos sin) to produce a symbolic
expression, which is not a function that can be applied to (+ 3 a).
The problem is that the applicability of the symbolic operation for +
accepts arguments with at least one symbolic argument and other
arguments from the domain predicate of the base. But the symbolic
arithmetic was created over the generic arithmetic as a base, and the
domain predicate of a generic arithmetic accepts anything! There is
also a function operation for + that is applicable to the same
arguments, but it has not been chosen because of the accidental
ordering of the extensions. Unfortunately, the choice of rule is
ambiguous. It would be better to not have more than one applicable
operation.

One way to resolve this problem is to restrict the symbolic
quantities to represent numbers. We can do this by building our
generic arithmetic so that the symbolic arithmetic is over the numeric
arithmetic, as we did on page 92, rather than over the entire generic
arithmetic:

(let ((g

       (make-generic-arithmetic make-simple-dispatch-store)))

  (add-to-generic-arithmetic! g numeric-arithmetic)

  (extend-generic-arithmetic! g function-extender)

  (add-to-generic-arithmetic! g

      (symbolic-extender numeric-arithmetic))

  (install-arithmetic! g))

This works, independent of the ordering, because there is no
ambiguity in the choice of rules. So now the ’c will be interpreted as a
constant to be coerced to a constant function by the function extender.

(* ’b ((+ ’c cos sin) (+ 3 ’a)))

(* b (+ (+ c (cos (+ 3 a))) (sin (+ 3 a))))

Unfortunately, we may want to have symbolic expressions over other
quantities besides numbers. We cannot yet implement a general
solution to this problem. But if we really want a literal function named
c, we can use literal-function as we did earlier:



(* ’b ((+ (literal-function ’c) cos sin) (+ 3 ’a)))

(* b (+ (+ (c (+ 3 a)) (cos (+ 3 a))) (sin (+ 3 a))))

This will work independent of the order of construction of the generic
arithmetic.

With this mechanism we are now in a position to evaluate the
Stormer integrator with a literal function:

(pp (x 0 ((evolver (literal-function ’F) ’h stormer-2)

          (make-initial-history 't ’h ’xt ’xt-h ’xt-2h)

          1))

(+ (+ (* 2 xt) (* -1 xt-h))

   (* (/ (expt h 2) 12)

      (+ (+ (* 13 (f t xt))

            (* -2 (f (- t h) xt-h)))

         (f (- t (* 2 h)) xt-2h))))

This is pretty ugly, and it would be worse if we looked at the output of
two integration steps. But it is interesting to look at the result of
simplifying a two-step integration. Using a magic symbolic-expression
simplifier we get a pretty readable expression. This can be useful for
debugging a numerical process.

(+ (* 2 (expt h 2) (f t xt))

   (* -1/4 (expt h 2) (f (+ (* -1 h) t) xt-h))

   (* 1/6 (expt h 2) (f (+ (* -2 h) t) xt-2h))

   (* 13/12

      (expt h 2)

      (f (+ h t)

         (+ (* 13/12 (expt h 2) (f t xt))

            (* -1/6 (expt h 2) (f (+ (* -1 h) t) xt-h))

            (* 1/12 (expt h 2) (f (+ (* -2 h) t) xt-2h))

            (* 2 xt)

            (* -1 xt-h))))

   (* 3 xt)

   (* -2 xt-h))

For example, notice that there are only four distinct top-level calls to
the acceleration function f. The second argument to the fourth top-
level call uses three calls to f that have already been computed. If we
eliminate common subexpressions we get:

(let* ((G84 (expt h 2)) (G85 (f t xt)) (G87 (* -1 h))

       (G88 (+ G87 t)) (G89 (f G88 xt-h)) (G91 (* -2 h))

       (G92 (+ G91 t)) (G93 (f G92 xt-2h)))



  (+ (* 2 G84 G85)

     (* -1/4 G84 G89)

     (* 1/6 G84 G93)

     (* 13/12 G84

        (f (+ h t)

           (+ (* 13/12 G84 G85)

              (* -1/6 G84 G89)

              (* 1/12 G84 G93)

              (* 2 xt)

              (* -1 xt-h))))

     (* 3 xt)

     (* -2 xt-h)))

Here we clearly see that there are only four distinct calls to f. Though
each integration step in the basic integrator makes three calls to f, the
two steps overlap on two intermediate calls. While this is obvious for
such a simple example, we see how symbolic evaluation might help in
understanding a numerical computation.

3.2.3 Implementing generic procedures
We have used generic procedures to do amazing things. But how do we
make such a thing work?

Making constructors for generic procedures
On page 89 we made a simple generic procedure constructor:

(define simple-generic-procedure

  (generic-procedure-constructor make-simple-dispatch-store))

The procedure generic-procedure-constructor is given a
“dispatch strategy” procedure; it returns a generic-procedure
constructor that takes a name, an arity, and a default-handler
specification. When this procedure is called with these three
arguments it returns a generic procedure that it associates with a
newly constructed metadata store for that procedure, which holds the
name, the arity, an instance of the dispatch strategy, and the default
handler, if any. The dispatch-strategy instance will maintain the
handlers, their applicabilities, and the mechanism for deciding which
handler to choose for given arguments to the generic procedure.

The code that implements generic-procedure-constructor is:



(define (generic-procedure-constructor dispatch-store-maker)

  (lambda (name arity default-handler)

    (let ((metadata

           (make-generic-metadata

             name arity (dispatch-store-maker)

             (or default-handler

                 (error-generic-procedure-handler name)))))

      (define (the-generic-procedure . args)

        (generic-procedure-dispatch metadata args))

      (set-generic-procedure-metadata! the-generic-procedure

                                       metadata)

      the-generic-procedure)))

This implementation uses the-generic-procedure, an ordinary
Scheme procedure, to represent the generic procedure, and a metadata
store (for rules, etc.) that determines the procedure's behavior. This
store is associated with the generic procedure using a “sticky note” (as
on page 28) and can later be obtained by calling generic-procedure-
metadata. This allows procedures such as define-generic-

procedure-handler to modify the metadata of a given generic
procedure.

The argument to generic-procedure-constructor is a procedure
that creates a dispatch store for saving and retrieving handlers. The
dispatch store encapsulates the strategy for choosing a handler.

Here is the simple dispatch-store constructor we have used so far.
The dispatch store is implemented as a message-accepting procedure:

(define (make-simple-dispatch-store)

  (let ((rules ’()) (default-handler #f))

    (define (get-handler args)

      ;; body will be shown in text below.

      ...)

    (define (add-handler! applicability handler)

      ;; body will be shown in text below.

      ...)

    (define (get-default-handler) default-handler)

    (define (set-default-handler! handler)

      (set! default-handler handler))

    (lambda (message)      ; the simple dispatch store

      (case message

        ((get-handler) get-handler)

        ((add-handler!) add-handler!)

        ((get-default-handler) get-default-handler)

        ((set-default-handler!) set-default-handler!)



        ((get-rules) (lambda () rules))

        (else (error "Unknown message:" message))))))

The simple dispatch store just maintains a list of the rules, each of
which pairs an applicability with a handler. When the get-handler
internal procedure is called with arguments for the generic procedure,
it scans the list sequentially for a handler whose applicability is
satisfied by the arguments tendered; it returns the handler, or #f if it
doesn't find one:

(define (get-handler args)

  (let ((rule

         (find (lambda (rule)

                 (predicates-match? (car rule) args))

               rules)))

    (and rule (cdr rule))))

There are many possible strategies for choosing handlers to run.
The above code returns the first applicable handler in the list. Another
strategy is to return all applicable handlers. If more than one handler
is applicable, perhaps all should be tried (in parallel?) and the results
compared! Passing a dispatch-store constructor as an argument to
generic-procedure-constructor allows the strategy to be chosen
when the generic-procedure constructor is created, rather than being
hard-coded into the implementation.

Adding handlers to generic procedures
The handler definition procedure (see below) adds new rules by calling
the internal procedure add-handler of the dispatch store. For make-
simple-dispatch-store above, add-handler adds the new rule to
the front of the list of rules. (But if there was already a rule for
handling that applicability, it just replaces the handler.)

(define (add-handler! applicability handler)

  (for-each (lambda (predicates)

              (let ((p (assoc predicates rules)))

                (if p

                    (set-cdr! p handler)

                    (set! rules

                          (cons (cons predicates handler)

                                rules)))))



            applicability))

The define-generic-procedure-handler procedure uses the
metadata table to get the metadata record for the generic procedure. It
asks the dispatch store for the add-handler! procedure and uses that
procedure to add a rule to the metadata that associates the
applicability with the handler. The dispatch-store instance is retrieved
from the metadata of the generic procedure by generic-metadata-
dispatch-store.

(define (define-generic-procedure-handler generic-procedure

                                          applicability

                                          handler)

  (((generic-metadata-dispatch-store

     (generic-procedure-metadata generic-procedure))

    ’add-handler!)

   applicability

   handler))

Finally, the heart of the mechanism is the dispatch, called by a
generic procedure (the-generic-procedure on page 97), which finds
an appropriate handler and applies it. The default handler, as supplied
during construction of the generic procedure, is called if there is no
applicable handler.13

(define (generic-procedure-dispatch metadata args)

  (let ((handler

         (get-generic-procedure-handler metadata args)))

    (apply handler args)))

(define (get-generic-procedure-handler metadata args)

  (or ((generic-metadata-getter metadata) args)

      ((generic-metadata-default-getter metadata))))

The power of extensible generics
Construction of a system on a substrate of extensible generic
procedures is a powerful idea. In our example it is possible to define
what is meant by addition, multiplication, etc., for new data types
unimagined by the language designer. For example, if the arithmetic
operators of a system are implemented as extensible generics, a user
may extend them to support arithmetic on quaternions, vectors,



matrices, integers modulo a prime, functions, tensors, differential
forms, This is not just making new capabilities possible; it also extends
old programs, so a program that was written to manipulate simple
numerical quantities may become useful for manipulating scalar-
valued functions.

We have seen that there are potential problems associated with this
use of extensible generic procedures. On the other hand, some
“mutations” will be extremely valuable. For example, it is possible to
extend arithmetic to symbolic quantities. The simplest way to do this
is to make a generic extension to all of the operators to take symbolic
quantities as arguments and return a data structure representing the
indicated operation on the arguments. With the addition of a
simplifier of algebraic expressions we suddenly have a symbolic
manipulator. This is useful in debugging purely numerical
calculations, because if we give them symbolic arguments we can
examine the resulting symbolic expressions to make sure that the
program is calculating what we intend it to. It is also the basis of a
partial evaluator for optimization of numerical programs. And
functional differentiation can be viewed as a generic extension of
arithmetic to a compound data type (see section 3.3). The scmutils
system we use to teach classical mechanics [121] implements
differentiation in exactly this way.



Exercise 3.4: Functional values
The generic arithmetic structure allows us to close the system so that
functions that return functions can work, as in the example

(((* 3

    (lambda (x) (lambda (y) (+ x y)))

    (lambda (x) (lambda (y) (vector y x))))

 ’a)

4)

(* (* 3 (+ a 4)) #(4 a))

a. How hard is it to arrange for this to work in the purely
combinator-based arithmetic introduced in section 3.1? Why?

b. Exercise 3.3 on page 86 asked about the implications of ordering
of vector and functional extensions. Is the generic system able to
support both expressions discussed there (and copied below)?
Explain.

((magnitude unit-circle) ’a)

((magnitude (vector sin cos)) ’a)

c. Is there any good way to make the following work at all?

((vector cos sin) 3)

#(-.9899924966004454 .1411200080598672)

Show code that makes this work or explain the difficulties.



Exercise 3.5: A weird bug
Consider the +-like (“plus-like”) procedure in arith.scm, shown
below, which implements n-ary procedures + and * as part of
installing an arithmetic. It returns a pair of a name and a procedure;
the installer will bind the name to the procedure.

It seems that it is written to execute the get-identity procedure
that computes the identity every time the operation is called with no
arguments.

(define (+-like operator identity-name)

  (lambda (arithmetic)

    (let ((binary-operation

           (find-arithmetic-operation operator arithmetic)))

      (and binary-operation

           (let ((binary

                  (operation-procedure binary-operation))

                 (get-identity

                  (identity-name->getter identity-name

                                         arithmetic)))

             (cons operator

                   (lambda args

                     (case (length args)

                       ((0) (get-identity))

                       ((1) (car args))

                       (else (pairwise binary args))))))))))

Perhaps the identity for an operator should be computed only once,
not every time the handler is called. As a consequence, it is proposed
that the code should be modified as follows:

(define (+-like operator identity-name)

  (lambda (arithmetic)

    (let ((binary-operation

           (find-arithmetic-operation operator arithmetic)))

      (and binary-operation

           (let ((binary

                  (operation-procedure binary-operation))

                 (identity

                  ((identity-name->getter identity-name

                                          arithmetic))))

             (cons operator



                   (lambda args

                     (case (length args)

                       ((0) identity)

                       ((1) (car args))

                       (else (pairwise binary args))))))))))

However, this has a subtle bug! Can you elicit the bug? Can you
explain it?



Exercise 3.6: Matrices
Matrices are ubiquitous in scientific and technical computing.

a. Make and install an arithmetic package for matrices of numbers,
with operations +, -, negate, and *. This arithmetic needs to be
able to know the number of rows and the number of columns in a
matrix, since matrix multiplication is defined only if the number of
columns in the first matrix is equal to the number of rows in the
second one.

Make sure that your multiplier can multiply a matrix with a scalar
or with a vector. For matrices to play well with vectors you probably
need to distinguish row vectors and column vectors. How does this
affect the design of the vector package? (See exercise 3.2 on page 85.)

You may assume that the vectors and matrices are of small
dimension, so you do not need to deal with sparse representations. A
reasonable representation of a matrix is a Scheme vector in which each
element is a Scheme vector representing a row.

b. Vectors and matrices may contain symbolic numerical
quantities. Make this work.

c. Matrix inversion is appropriate for your arithmetic. If a symbolic
matrix is dense, the inverse may take space that is factorial in the
dimension. Why?

Note: We are not asking you to implement matrix inversion.



Exercise 3.7: Literal vectors and matrices
It is also possible to have arithmetic on literal matrices and literal
vectors with an algebra of symbolic expressions of vectors and
matrices. Can you make symbolic algebra of these compound
structures play well with vectors and matrices that have symbolic
numerical expressions as elements? Caution: This is quite hard.
Perhaps it is appropriate as part of a long-term project.



3.3 Example: Automatic differentiation

One remarkable application of extensible generic procedures is
automatic differentiation.14 This is a beautiful way to obtain a
program that computes the derivative of the function computed by a
given program.15 Automatic differentiation is now an important
component in machine learning applications.

We will see that a simple way to implement automatic
differentiation is to extend the generic arithmetic primitives to work
with differential objects, a new compound data type. This will enable
the automatic differentiation of symbolic as well as numerical
functions. It will also enable us to make automatic differentiation work
with higher-order procedures—procedures that return other
procedures as values.

Here is a simple example of automatic differentiation to illustrate
what we are talking about:

((derivative (lambda (x) (expt x 3))) 2)

12

Note that the derivative of the function that computes the cube of its
argument is a new function, which when given 2 as its argument
returns 12 as its value.

If we extend the arithmetic to handle symbolic expressions, and we
do some algebraic simplification on the result, we get:

((derivative (lambda (x) (expt x 3))) ’a)

(* 3 (expt a 2))

And the full power of the programming language is available,
including higher-order procedures. This kind of system is useful in
working with the very large expressions that occur in interesting
physics problems.16

Let's look at a simple application: the computation of the roots of an
equation by Newton's method. The idea is that we want to find values
of x for which f (x) = 0. If f is sufficiently smooth, and we have a



sufficiently close guess x0, we can improve the guess by computing a
new guess x1 by the formula:

This can be repeated, as necessary, to get a sufficiently accurate result.
An elementary program to accomplish this is:

(define (root-newton f initial-guess tolerance)

  (let ((Df (derivative f)))

    (define (improve-guess xn)

      (- xn (/ (f xn) (Df xn))))

    (let loop ((xn initial-guess))

      (let ((xn+1 (improve-guess xn)))

        (if (close-enuf? xn xn+1 tolerance)

            xn+1

            (loop xn+1))))))

Notice that the local procedure named Df in root-newton is a
procedure that computes the derivative of the function computed by
the procedure passed in as f.

For example, suppose we want to know the angle θ in the first
quadrant for which cos(θ) = sin(θ). (The answer is π/4 ≈
.7853981633974484) We can write:

(define (cs theta)

  (- (cos theta) (sin theta)))

(root-newton cs 0.5 1e-8)

.7853981633974484

This result is correct to full machine accuracy.

3.3.1 How automatic differentiation works
The program for automatic differentiation is directly derived from the
definition of the derivative. Suppose that given a function f and a point
x in its domain, we want to know the value of the function at a nearby
point f (x + Δx), where Δx is a small increment. The derivative of a



function f is defined to be the function Df whose value for particular
arguments x is something that can be “multiplied” by an increment Δx
of the argument to get the best possible linear approximation to the
increment in the value of f:

We implement this definition using a data type that we call a
differential object. A differential object [x, δx] can be thought of as a
number with a small increment, x + δx. But we treat it as a new
numerical quantity similar to a complex number: it has two
components, a finite part and an infinitesimal part.17 We extend each
primitive arithmetic function to work with differential objects: each
primitive arithmetic function f must know its derivative function Df ,
so that:

(3.5)

Note that the derivative of f at the point x, Df (x), is the coefficient of
δx in the infinitesimal part of the resulting differential object.

Now here is the powerful idea: If we then pass the result of f ([x,
δx]) (equation 3.5) through another function g, we obtain the chain-
rule answer we would hope for:

Thus, if we can compute the results of all primitive functions on
differential objects, we can compute the results of all compositions of
functions on differential objects. Given such a result, we can extract
the derivative of the composition: the derivative is the coefficient of
the infinitesimal increment in the resulting differential object.

To extend a generic arithmetic operator to compute with



differential objects, we need only supply a procedure that computes
the derivative of the primitive arithmetic function that the operator
names. Then we can use ordinary Scheme compositions to get the
derivative of any composition of primitive functions.18

Given a procedure implementing a unary function f, the procedure
derivative produces a new procedure the-derivative that
computes the derivative of the function computed by f.19 When
applied to some argument, x, the derivative creates a new infinitesimal
increment dx and adds it to the argument to get the new differential
object [x, δx] that represents x + δx. The procedure f is then applied to
this differential object and the derivative of f is obtained by extracting
the coefficient of the infinitesimal increment dx from the value:

(define (derivative f)

  (define (the-derivative x)

    (let* ((dx (make-new-dx))

           (value (f (d:+ x (make-infinitesimal dx)))))

      (extract-dx-part value dx)))

  the-derivative)

The procedure make-infinitesimal makes a differential object
whose finite part is zero and whose infinitesimal part is dx. The
procedure d:+ adds differential objects. The details will be explained
in section 3.3.3.

Extending the primitives
We need to make handler procedures that extend the primitive
arithmetic generic procedures to operate on differential objects. For
each unary procedure we have to make the finite part of the result and
the infinitesimal part of the result, and we have to put the results
together, as expressed in equation 3.5. So the handler for a unary
primitive arithmetic procedure that computes function f is constructed
by diff:unary-proc from the procedure f for f and the procedure df
for its derivative Df. These are glued together using special addition
and multiplication procedures d:+ and d:* for differential objects, to
be explained in section 3.3.3.

(define (diff:unary-proc f df)

  (define (uop x)       ; x is a differential object



      (let ((xf (finite-part x))

            (dx (infinitesimal-part x)))

        (d:+ (f xf) (d:* (df xf) dx))))

  uop)

For example, the sqrt procedure handler for differential objects is
just:

(define diff:sqrt

  (diff:unary-proc sqrt (lambda (x) (/ 1 (* 2 (sqrt x))))))

The first argument of diff:unary-proc is the sqrt procedure and the
second argument is a procedure that computes the derivative of sqrt.

We add the new handler to the generic sqrt procedure using

(assign-handler! sqrt diff:sqrt differential?)

where differential? is a predicate that is true only of differential
objects. The procedure assign-handler! is just shorthand for a useful
pattern:

(define (assign-handler! procedure handler . preds)

  (define-generic-procedure-handler procedure

    (apply match-args preds)

    handler))

And the procedure match-args makes an applicability specification
from a sequence of predicates.

Handlers for other unary primitives are straightforward:20

(define diff:exp (diff:unary-proc exp exp))

(define diff:log (diff:unary-proc log (lambda (x) (/ 1 x))))

(define diff:sin (diff:unary-proc sin cos))

(define diff:cos

        (diff:unary-proc cos (lambda (x) (* -1 (sin x)))))

⋮

Binary arithmetic operations are a bit more complicated.

(3.6)



where ∂0f and ∂1f are the partial derivative functions of f with respect
to the two arguments. Let f be a function of two arguments; then ∂0f is
a new function of two arguments that computes the partial derivative
of f with respect to its first argument:

So the rule for binary operations is

To implement binary operations we might think that we could
simply follow the plan for unary operations, where d0f and d1f are the
two partial derivative functions:

(define (diff:binary-proc f d0f d1f)

  (define (bop x y)

    (let ((dx (infinitesimal-part x))

          (dy (infinitesimal-part y))

          (xf (finite-part x))

          (yf (finite-part y)))

      (d:+ (f xf yf)

           (d:+ (d:* dx (d0f xf yf))

                (d:* (d1f xf yf) dy)))))

  bop)

This is a good plan, but it isn't quite right: it doesn't ensure that the
finite and infinitesimal parts are consistently chosen for the two
arguments. We need to be more careful about how we choose the
parts. We will explain this technical detail and fix it in section 3.3.3,
but let's go with this approximately correct code for now.

Addition and multiplication are straightforward, because the partial
derivatives are simple, but division and exponentiation are more
interesting. We show the assignment of handlers only for diff:+
because all the others are similar.



(define diff:+

  (diff:binary-proc +

                    (lambda (x y) 1)

                    (lambda (x y) 1)))

(assign-handler! + diff:+ differential? any-object?)

(assign-handler! + diff:+ any-object? differential?)

(define diff:*

  (diff:binary-proc *

                    (lambda (x y) y)

                    (lambda (x y) x)))

(define diff:/

  (diff:binary-proc /

                    (lambda (x y)

                      (/ 1 y))

                    (lambda (x y)

                      (* -1 (/ x (square y))))))

The handler for exponentiation f (x, y) = x is a bit more
complicated. The partial with respect to the first argument is simple:
∂0f (x, y) = yx−1. But the partial with respect to the second argument is
usually ∂1f (x, y) = x log x, except for some special cases:

(define diff:expt

  (diff:binary-proc expt

    (lambda (x y)

      (* y (expt x (- y 1))))

    (lambda (x y)

      (if (and (number? x) (zero? x))

          (if (number? y)

              (if (positive? y)

                  0

                  (error "Derivative undefined: EXPT"

                         x y))

              0)

          (* (log x) (expt x y))))))

Extracting the derivative's value
To compute the value of the derivative of a function, we apply the
function to a differential object and obtain a result. We have to extract
the derivative's value from that result. There are several possibilities



that must be handled. If the result is a differential object, we have to
pull the derivative's value out of the object. If the result is not a
differential object, the derivative's value is zero. There are other cases
that we have not mentioned. This calls for a generic procedure with a
default that produces a zero.

(define (extract-dx-default value dx) 0)

(define extract-dx-part

  (simple-generic-procedure ’extract-dx-part 2

                            extract-dx-default))

In the case where a differential object is returned, the coefficient of
dx is the required derivative. This will turn out to be a bit complicated,
but the basic idea can be expressed as follows:

(define (extract-dx-differential value dx)

  (extract-dx-coefficient-from (infinitesimal-part value) dx))

(define-generic-procedure-handler extract-dx-part

  (match-args differential? diff-factor?)

  extract-dx-differential)

The reason this is not quite right is that for technical reasons the
structure of a differential object is more complex than we have already
shown. It will be fully explained in section 3.3.3.

Note: We made the extractor generic to enable future extensions to
functions that return functions or compound objects, such as vectors,
matrices, and tensors. (See exercise 3.12 on page 124.)

Except for the fact that there may be more primitive operators and
data structures to be included, this is all that is really needed to
implement automatic differentiation! All of the procedures referred to
in the handlers are the usual generic procedures on arithmetic; they
may include symbolic arithmetic and functional arithmetic.

3.3.2 Derivatives of n-ary functions
For a function with multiple arguments we need to be able to compute
the partial derivatives with respect to each argument. One way to do
this is:21

(define ((partial i) f)



  (define (the-derivative . args)

    (if (not (< i (length args)))

        (error "Not enough arguments for PARTIAL" i f args))

    (let* ((dx (make-new-dx))

           (value

            (apply f (map (lambda (arg j)

                            (if (= i j)

                                (d:+ arg

                                     (make-infinitesimal dx))

                                arg))

                          args (iota (length args))))))

      (extract-dx-part value dx)))

  the-derivative)

Here we are extracting the coefficient of the infinitesimal dx in the
result of applying f to the arguments supplied with the ith argument
incremented by dx.22

Now consider a function g of two arguments. Expanding on
equation 3.6 we find that the derivative Dg is multiplied by a vector of
increments to the arguments:

The derivative Dg of g at the point x, y is the pair of partial derivatives
in square brackets. The inner product of that covector of partials with
the vector of increments is the increment to the function g. The
general-derivative procedure computes this result:

(define (general-derivative g)

  (define ((the-derivative . args) . increments)

    (let ((n (length args)))

      (assert (= n (length increments)))

      (if (= n 1)

          (* ((derivative g) (car args))

             (car increments))

          (reduce (lambda (x y) (+ y x))

                  0

                  (map (lambda (i inc)

                         (* (apply ((partial i) g) args)



                             inc))

                       (iota n)

                       increments)))))

  the-derivative)

Unfortunately general-derivative does not return the structure
of partial derivatives. It is useful in many contexts to have a derivative
procedure gradient that actually gives the covector of partial
derivatives. (See exercise 3.10.)



Exercise 3.8: Partial derivatives
Another way to think about partial derivatives is in terms of λ-calculus
currying. Draw a diagram of how the data must flow. Use currying to
fix the arguments that are held constant, producing a one-argument
procedure that the ordinary derivative will be applied to. Write that
version of the partial derivative procedure.



Exercise 3.9: Adding handlers
There are primitive arithmetic functions for which we did not add
handlers for differential objects, for example tan.

a. Add handlers for tan and atan1 (atan1 is a function of one
argument).

b. It would be really nice to have atan optionally take two
arguments, as in the Scheme Report [109], because we usually
want to preserve the quadrant we are working in. Fix the generic
procedure atan to do this correctly—using atan1 for one argument
and atan2 if given two arguments. Also, install an atan2 handler
for differentials. Remember, it must coexist with the atan1 handler.



Exercise 3.10: Vectors and covectors
As described above, the idea of derivative can be generalized to
functions with multiple arguments. The gradient of a function of
multiple arguments is the covector of partial derivatives with respect
to each of the arguments.

a. Develop data types for vectors and covectors such that the value
of Dg(x, y) is the covector of partials. Write a gradient procedure
that delivers that value. Remember, the product of a vector and a
covector should be their inner product—the sum of the
componentwise products of their elements.

b. Notice that if the input to a function is a vector, that is similar to
multiple inputs, so the output of the gradient should be a covector.
Note also that if the input to a function is a covector, then the
output of the gradient should be a vector. Make this work.

3.3.3 Some technical details
Although the idea behind automatic differentiation is not complicated,
there are a number of subtle technical details that must be addressed
for it to work correctly.

Differential algebra
If we want to compute a second derivative we must take a derivative of
a derivative function. The evaluation of such a function will have two
infinitesimals in play. To enable the computation of multiple
derivatives and derivatives of functions of several variables we define
an algebra of differential objects in “infinitesimal space.” The objects
are multivariate power series in which no infinitesimal increment has
exponent greater than one.23

A differential object is represented by a tagged list of the terms of a
power series. Each term has a coefficient and a list of infinitesimal
incremental factors. The terms are kept sorted, in descending order.
(Order is the number of incrementals. So δxδy is higher order than δx



or δy.) Here is a quick and dirty implementation:24

(define differential-tag 'differential)

(define (differential? x)

  (and (pair? x) (eq? (car x) differential-tag)))

(define (diff-terms h)

  (if (differential? h)

      (cdr h)

      (list (make-diff-term h ’()))))

The term list is just the cdr of the differential object. However, if we
are given an object that is not explicitly a differential object, for
example a number, we coerce it to a differential object with a single
term and with no incremental factors. When we make a differential
object from a (presorted) list of terms, we always try to return a
simplified version, which may be just a number, which is not explicitly
a differential object:

(define (make-differential terms)

  (let ((terms                       ; Nonzero terms

         (filter

          (lambda (term)

            (let ((coeff (diff-coefficient term)))

              (not (and (number? coeff) (= coeff 0)))))

          terms)))

    (cond ((null? terms) 0)

          ((and (null? (cdr terms))

                ;; Finite part only:

                (null? (diff-factors (car terms))))

           (diff-coefficient (car terms)))

          ((every diff-term? terms)

           (cons differential-tag terms))

          (else (error "Bad terms")))))

In this implementation the terms are also represented as tagged
lists, each containing a coefficient and an ordered list of factors.

(define diff-term-tag 'diff-term)

(define (make-diff-term coefficient factors)

  (list diff-term-tag coefficient factors))

(define (diff-term? x)



  (and (pair? x) (eq? (car x) diff-term-tag)))

(define (diff-coefficient x)

  (cadr x))

(define (diff-factors x)

  (caddr x))

To compute derivatives we need to be able to add and multiply
differential objects:

(define (d:+ x y)

  (make-differential

   (+diff-termlists (diff-terms x) (diff-terms y))))

(define (d:* x y)

  (make-differential

   (*diff-termlists (diff-terms x) (diff-terms y))))

and we also need this:

(define (make-infinitesimal dx)

  (make-differential (list (make-diff-term 1 (list dx)))))

Addition of term lists is where we enforce and use the sorting of
terms, with higher-order terms coming earlier in the lists. We can add
two terms only if they have the same factors. And if the sum of the
coefficients is zero we do not include the resulting term.

(define (+diff-termlists l1 l2)

  (cond ((null? l1) l2)

        ((null? l2) l1)

        (else

         (let ((t1 (car l1)) (t2 (car l2)))

           (cond ((equal? (diff-factors t1) (diff-factors t2))

                  (let ((newcoeff (+ (diff-coefficient t1)

                                     (diff-coefficient t2))))

                    (if (and (number? newcoeff)

                             (= newcoeff 0))

                        (+diff-termlists (cdr l1) (cdr l2))

                        (cons

                         (make-diff-term newcoeff

                                         (diff-factors t1))

                         (+diff-termlists (cdr l1)

                                          (cdr l2))))))

                 ((diff-term>? t1 t2)



                  (cons t1 (+diff-termlists (cdr l1) l2)))

                 (else

                  (cons t2

                        (+diff-termlists l1 (cdr l2)))))))))

Multiplication of term lists is straightforward, if we can multiply
individual terms. The product of two term lists l1 and l2 is the term
list resulting from adding up the term lists resulting from multiplying
every term in l1 by every term in l2.

(define (*diff-termlists l1 l2)

  (reduce (lambda (x y)

            (+diff-termlists y x))

          ’()
          (map (lambda (t1)

                 (append-map (lambda (t2)

                               (*diff-terms t1 t2))

                             l2))

               l1)))

A term has a coefficient and a list of factors (the infinitesimals). In a
differential object no term may have an infinitesimal with an exponent
greater than one, because δx2 = 0. Thus, when we multiply two terms
we must check that the lists of factors we are merging have no factors
in common. This is the reason that *diff-terms returns a list of the
product term or an empty list, to be appended in *diff-termlists.
We keep the factors sorted when we merge the two lists of factors; this
makes it easier to sort the terms.

(define (*diff-terms x y)

  (let ((fx (diff-factors x)) (fy (diff-factors y)))

    (if (null? (ordered-intersect diff-factor>? fx fy))

        (list (make-diff-term

               (* (diff-coefficient x) (diff-coefficient y))

               (ordered-union diff-factor>? fx fy)))

        ’())))

Finite and infinitesimal parts
A differential object has a finite part and an infinitesimal part. Our
diff:binary-proc procedure on page 109 is not correct for
differential objects with more than one infinitesimal. To ensure that
the parts of the arguments x and y are selected consistently we actually



use:

(define (diff:binary-proc f d0f d1f)

  (define (bop x y)

    (let ((factor (maximal-factor x y)))

      (let ((dx (infinitesimal-part x factor))

            (dy (infinitesimal-part y factor))

            (xe (finite-part x factor))

            (ye (finite-part y factor)))

        (d:+ (f xe ye)

             (d:+ (d:* dx (d0f xe ye))

                  (d:* (d1f xe ye) dy))))))

  bop)

where factor is chosen by maximal-factor so that both x and y
contain it in a term with the largest number of factors.

The finite part of a differential object is all terms except for terms
containing the maximal factor in a term of highest order, and the
infinitesimal part is the remaining terms, all of which contain that
factor.

Consider the following computation:

The highest-order term is ∂0∂1f (x, y) · δxδy. It is symmetrical with
respect to x and y. The crucial point is that we may break the
differential object into parts in any way consistent with any one of the
maximal factors (here δx or δy) being primary. It doesn't matter which
is chosen, because mixed partials of R → R commute.25

(define (finite-part x #!optional factor)

  (if (differential? x)

      (let ((factor (default-maximal-factor x factor)))

        (make-differential

         (remove (lambda (term)

                   (memv factor (diff-factors term)))

                 (diff-terms x))))

      x))

(define (infinitesimal-part x #!optional factor)



  (if (differential? x)

      (let ((factor (default-maximal-factor x factor)))

        (make-differential

         (filter (lambda (term)

                   (memv factor (diff-factors term)))

                 (diff-terms x))))

      0))

(define (default-maximal-factor x factor)

  (if (default-object? factor)

      (maximal-factor x)

      factor))

How extracting really works
As explained on page 114, to make it possible to take multiple
derivatives or to handle functions with more than one argument, a
differential object is represented as a multivariate power series in
which no infinitesimal increment has exponent greater than one. Each
term in this series has a coefficient and a list of infinitesimal
incremental factors. This complicates the extraction of the derivative
with respect to any one incremental factor. Here is the real story:

In the case where a differential object is returned we must find
those terms of the result that contain the infinitesimal factor dx for the
derivative we are evaluating. We collect those terms, removing dx from
each. If there are no terms left after taking out the ones with dx, the
value of the derivative is zero. If there is exactly one term left, which
has no differential factors, then the coefficient of that term is the value
of the derivative. But if there are remaining terms with differential
factors, we must return the differential object with those residual
terms as the value of the derivative.

(define (extract-dx-differential value dx)

  (let ((dx-diff-terms

         (filter-map

          (lambda (term)

            (let ((factors (diff-factors term)))

              (and (memv dx factors)

                   (make-diff-term (diff-coefficient term)

                                   (delv dx factors)))))

          (diff-terms value))))

    (cond ((null? dx-diff-terms) 0)



          ((and (null? (cdr dx-diff-terms))

                (null? (diff-factors (car dx-diff-terms))))

           (diff-coefficient (car dx-diff-terms)))

          (else (make-differential dx-diff-terms)))))

(define-generic-procedure-handler extract-dx-part

  (match-args differential? diff-factor?)

  extract-dx-differential)

Higher-order functions
For many applications we want our automatic differentiator to work
correctly for functions that return functions as values:

(((derivative

   (lambda (x)

     (lambda (y z)

       (* x y z))))

  2)

 3

 4)

;Value: 12

Including literal functions and partial derivatives makes this even
more interesting.

((derivative

  (lambda (x)

    (((partial 1) (literal-function ’f))

     x ’v)))

 ’u)

(((partial 0) ((partial 1) f)) u v)

And things can get even more complicated:

(((derivative

   (lambda (x)

     (derivative

      (lambda (y)

        ((literal-function ’f)

         x y)))))

  ’u)

 ’v)

(((partial 0) ((partial 1) f)) u v)

Making this work introduces serious complexity in the procedure



extract-dx-part.
If the result of applying a function to a differential object is a

function—a derivative of a derivative, for example—we need to defer
the extraction until that function is called with arguments:
In a case where a function is returned, as in

(((derivative

   (lambda (x)

     (derivative

      (lambda (y)

        (* x y)))))

  ’u)

 ’v)

1

we cannot extract the derivative until the function is applied to
arguments. So we defer the extraction until we get the value resulting
from that application. We extend our generic extractor:

(define (extract-dx-function fn dx)

  (lambda args

    (extract-dx-part (apply fn args) dx)))

(define-generic-procedure-handler extract-dx-part

  (match-args function? diff-factor?)

  extract-dx-function)

Unfortunately, this version of extract-dx-function has a subtle
bug.26 Our patch is to wrap the body of the new deferred procedure
with code that remaps the factor dx to avoid the unpleasant conflict.
So, we change the handler for functions to:

(define (extract-dx-function fn dx)

  (lambda args

    (let ((eps (make-new-dx)))

       (replace-dx dx eps

        (extract-dx-part

         (apply fn

           (map (lambda (arg)

                  (replace-dx eps dx arg))

                args))

         dx)))))

This creates a brand-new factor eps and uses it to stand for dx in the



arguments, thus preventing collision with any other instances of dx.
Replacement of the factors is itself a bit more complicated, because

the code has to grovel around in the data structures. We will make the
replacement a generic procedure, so we can extend it to new kinds of
data. The default is that the replacement is just the identity on the
object:

(define (replace-dx-default new-dx old-dx object) object)

(define replace-dx

  (simple-generic-procedure ’replace-dx 3

                            replace-dx-default))

For a differential object we have to actually go in and substitute the
new factor for the old one, and we have to keep the factor lists sorted:

(define (replace-dx-differential new-dx old-dx object)

  (make-differential

   (sort (map (lambda (term)

                (make-diff-term

                 (diff-coefficient term)

                 (sort (substitute new-dx old-dx

                                   (diff-factors term))

                       diff-factor>?)))

              (diff-terms object))

         diff-term>?)))

(define-generic-procedure-handler replace-dx

  (match-args diff-factor? diff-factor? differential?)

  replace-dx-differential)

Finally, if the object is itself a function we have to defer it until
arguments are available to compute a value:

(define (replace-dx-function new-dx old-dx fn)

  (lambda args

    (let ((eps (make-new-dx)))

      (replace-dx old-dx eps

        (replace-dx new-dx old-dx

          (apply fn

            (map (lambda (arg)

                   (replace-dx eps old-dx arg))

                 args)))))))

(define-generic-procedure-handler replace-dx



  (match-args diff-factor? diff-factor? function?)

  replace-dx-function)

This is quite a bit more complicated than we might expect. It actually
does three replacements of the differential factors. This is to prevent
collisions with factors that may be free in the body of fn that are
inherited from the lexical environment of definition of the function
fn.27



Exercise 3.11: The bug!
Before we became aware of the bug pointed out in footnote 26 on page
121, the procedure extract-dx-function was written:

(define (extract-dx-function fn dx)

  (lambda args

    (extract-dx-part (apply fn args) dx)))

Demonstrate the reason for the use of the replace-dx wrapper by
constructing a function whose derivative is wrong with this earlier
version of extract-dx-part but is correct in the fixed version. This is not
easy! You may want to read the references pointed at in footnote 26.

3.3.4 Literal functions of differential arguments
For simple arguments, applying a literal function is just a matter of
constructing the expression that is the application of the function
expression to the arguments. But literal functions must also be able to
accept differential objects as arguments. When that happens, the
literal function must construct (partial) derivative expressions for the
arguments that are differentials. For the ith argument of an n-
argument function the appropriate derivative expression is:

(define (deriv-expr i n fexp)

  (if (= n 1)

      ‘(derivative ,fexp)

      ‘((partial ,i) ,fexp)))

Some arguments may be differential objects, so a literal function
must choose, for each argument, a finite part and an infinitesimal part.
Just as for binary arithmetic handlers, the maximal factor must be
consistently chosen. Our literal functions are able to take many
arguments, so this may seem complicated, but we wrote the maximal-
factor procedure to handle many arguments. This is explained in
section 3.3.3.

If there are no differential objects among the arguments we just
cons up the required expression. If there are differential objects we



need to make a derivative of the literal function. To do this we find a
maximal factor from all of the arguments and separate out the finite
parts of the arguments—the terms that do not have that factor. (The
infinitesimal parts are the terms that have that factor.) The partial
derivatives are themselves literal functions with expressions that are
constructed to include the argument index. The resulting differential
object is the inner product of the partial derivatives at the finite parts
of the arguments with the infinitesimal parts of the arguments.

This is all brought together in the following procedure:

(define (literal-function fexp)

  (define (the-function . args)

    (if (any differential? args)

        (let ((n (length args))

              (factor (apply maximal-factor args)))

          (let ((realargs

                 (map (lambda (arg)

                        (finite-part arg factor))

                      args))

                (deltargs

                 (map (lambda (arg)

                        (infinitesimal-part arg factor))

                      args)))

            (let ((fxs (apply the-function realargs))

                  (partials

                   (map (lambda (i)

                          (apply (literal-function

                                  (deriv-expr i n fexp))

                                 realargs))

                        (iota n))))

              (fold d:+ fxs

                (map d:* partials deltargs)))))

        ‘(,fexp ,@args)))

  the-function)



Exercise 3.12: Functions with structured values
We made the extract-dx-part procedure generic (page 110) so we
could extend it for values other than differential objects and functions.
Extend extract-dx-part to work with derivatives of functions that
return vectors. Note: You also have to extend the replace-dx generic
procedure (page 122) in the extractor.



3.4 Efficient generic procedures

In section 3.2.3 we dispatched to a handler by finding an applicable
rule using the dispatch store provided in the metadata:

(define (generic-procedure-dispatch metadata args)

  (let ((handler

         (get-generic-procedure-handler metadata args)))

    (apply handler args)))

The implementation of the dispatch store (on page 98) we used (on
page 89) to make the simple-generic-procedure constructor was
rather crude. The simple dispatch store maintains the rule set as a list
of rules. Each rule is represented as a pair of an applicability and a
handler. The applicability is a list of lists of predicates to apply to
tendered arguments. The way a generic procedure constructed by
simple-generic-procedure finds an appropriate handler is to
sequentially scan the list of rules looking for an applicability that is
satisfied by the arguments.

This is seriously inefficient, because the applicability of many rules
may have the same predicate in a given operand position: For
example, for multiplication in a system of numerical and symbolic
arithmetic there may be many rules whose first predicate is number?.
So the number? predicate may be applied many times before finding
an applicable rule. It would be good to organize the rules so that
finding an applicable one does not perform redundant tests. This is
usually accomplished by the use of an index.

3.4.1 Tries
One simple index mechanism is based on the trie.28

A trie is traditionally a tree structure, but more generally it may be a
directed graph. Each node in the trie has edges connecting to
successor nodes. Each edge has an associated predicate. The data
being tested is a linear sequence of features, in this case the arguments
to a generic procedure.



Starting at the root of the trie, the first feature is taken from the
sequence and is tested by each predicate on an edge emanating from
the root node. The successful predicate's edge is followed to the next
node, and the process repeats with the remainder of the sequence of
features. When we run out of features, the current node will contain
the associated value, in this case an applicable handler for the
arguments.

It is possible that at any node, more than one predicate may
succeed. If this happens, then all of the successful branches must be
followed. Thus there may be multiple applicable handlers, and there
must be a separate means of deciding what to do.

Here is how we can use a trie. Evaluating the following sequence of
commands will incrementally construct the trie shown in figure 3.1.

Figure 3.1 A trie can be used to classify sequences of features. A trie is a directed graph in
which each edge has a predicate. Starting at the root, the first feature is tested by each
predicate on an edge proceeding from the root. If a predicate is satisfied, the process moves to
the node at the end of that edge and the next feature is tested. This is repeated with successive
features. The classification of the sequence is the set of terminal nodes arrived at.

(define a-trie (make-trie))

We can add an edge to this trie

(define s (add-edge-to-trie a-trie symbol?))

where add-edge-to-trie returns the new node that is at the target
end of the new edge. This node is reached by being matched against a



symbol.
We can make chains of edges, which are referenced by lists of the

corresponding edge predicates

(define sn (add-edge-to-trie s number?))

The node sn is reached from the root via the path (list symbol?
number?). Using a path, there is a simpler way to make a chain of
edges than repeatedly calling add-edge-to-trie:

(define ss (intern-path-trie a-trie (list symbol? symbol?)))

We can add a value to any node (here we show symbolic values, but
we will later store values that are procedural handlers):

(trie-has-value? sn)

#f

(set-trie-value! sn ’(symbol number))

(trie-has-value? sn)

#t

(trie-value sn)

(symbol number)

We can also use a path-based interface to set values

(set-path-value! a-trie (list symbol? symbol?)

                ’(symbol symbol))

(trie-value ss)

(symbol symbol)

Note that both intern-path-trie and set-path-value! reuse
existing nodes and edges when possible, adding edges and nodes
where necessary.

Now we can match a feature sequence against the trie we have
constructed so far:

(equal? (list ss) (get-matching-tries a-trie ’(a b)))

#t

(equal? (list s) (get-matching-tries a-trie ’(c)))

#t



We can also combine matching with value fetching. The procedure
get-a-value finds all matching nodes, picks one that has a value, and
returns that value.

(get-a-value a-trie ’(a b))

(symbol symbol)

But not all feature sequences have an associated value:

(get-a-value a-trie ’(-4))

;Unable to match features: (-4)

We can incrementally add values to nodes in the trie:

(set-path-value! a-trie (list negative-number?)

                 ’(negative-number))

(set-path-value! a-trie (list even-number?)

                 ’(even-number))

(get-all-values a-trie ’(-4))

((even-number) (negative-number))

where get-all-values finds all the nodes matching a given feature
sequence and returns their values.

Given this trie implementation, we can make a dispatch store that
uses a trie as its index:

(define (make-trie-dispatch-store)

  (let ((delegate (make-simple-dispatch-store))

        (trie (make-trie)))

    (define (get-handler args)

      (get-a-value trie args))

    (define (add-handler! applicability handler)

      ((delegate ’add-handler!) applicability handler)

      (for-each (lambda (path)

                  (set-path-value! trie path handler))

                applicability))

    (lambda (message)

      (case message

        ((get-handler) get-handler)

        ((add-handler!) add-handler!)

        (else (delegate message))))))

We make this dispatch store simple by delegating most of the
operations to a simple dispatch store. The operations that are not



delegated are add-handler!, which simultaneously stores the handler
in the simple dispatch store and also in the trie, and get-handler,
which exclusively uses the trie for access. The simple dispatch store
manages the default handler and also the set of rules, which is useful
for debugging. This is a simple example of the use of delegation to
extend an interface, as opposed to the better-known inheritance idea.



Exercise 3.13: Trie rules
To make it easy to experiment with different dispatch stores, we gave
generic-procedure-constructor and make-generic-arithmetic
the dispatch store maker. For example, we can build a full generic
arithmetic as on page 95 but using make-trie-dispatch-store as
follows:

(define trie-full-generic-arithmetic

  (let ((g (make-generic-arithmetic make-trie-dispatch-store)))

    (add-to-generic-arithmetic! g numeric-arithmetic)

    (extend-generic-arithmetic! g function-extender)

    (add-to-generic-arithmetic! g

       (symbolic-extender numeric-arithmetic))

    g))

(install-arithmetic! trie-full-generic-arithmetic)

a. Does this make any change to the dependence on order that we
wrestled with in section 3.2.2?

b. In general, what characteristics of the predicates could produce
situations where there is more than one appropriate handler for a
sequence of arguments?

c. Are there any such situations in our generic arithmetic code?

We have provided a crude tool to measure the effectiveness of our
dispatch strategy. By wrapping any computation with with-

predicate-counts we can find out how many times each dispatch
predicate is called in an execution. For example, evaluating (fib 20)
in a generic arithmetic with a trie-based dispatch store may yield
something like this:29

(define (fib n)

  (if (< n 2)

      n

      (+ (fib (- n 1)) (fib (- n 2)))))

(with-predicate-counts (lambda () (fib 20)))

(109453 number)



(109453 function)

(54727 any-object)

(109453 symbolic)

6765



Exercise 3.14: Dispatch efficiency: gotcha!
Given this performance tool it is instructive to look at executions of

(define (test-stormer-counts)

  (define (F t x) (- x))

  (define numeric-s0

    (make-initial-history 0 .01 (sin 0) (sin -.01) (sin -.02)))

  (with-predicate-counts

   (lambda ()

     (x 0 ((evolver F ’h stormer-2) numeric-s0 1)))))

for the rule-list–based dispatch in make-simple-dispatch-store, in the
arithmetic you get by:

(define full-generic-arithmetic

  (let ((g (make-generic-arithmetic make-simple-dispatch-store)))

    (add-to-generic-arithmetic! g numeric-arithmetic)

    (extend-generic-arithmetic! g function-extender)

    (add-to-generic-arithmetic! g

            (symbolic-extender numeric-arithmetic))

    g))

(install-arithmetic! full-generic-arithmetic)

and the trie-based version (exercise 3.13), in the arithmetic you get by:

(install-arithmetic! trie-full-generic-arithmetic)

For some problems the trie should have much better performance
than the simple rule list. We expect that the performance will be better
with the trie if we have a large number of rules with the same initial
segment.

Understanding this is important, because the fact that sometimes
the trie does not help with the performance appears counterintuitive.
We explicitly introduced the trie to avoid redundant calls. Explain this
phenomenon in a concise paragraph.

For an additional insight, look at the performance of (fib 20) in the
two implementations.

When more than one handler is applicable for a given sequence of



arguments, it is not clear how to use those handlers; addressing this
situation is the job of a resolution policy. There are many
considerations when designing a resolution policy. For example, a
policy that chooses the most specific handler is often a good policy;
however, we need more information to implement such a policy.
Sometimes it is appropriate to run all of the applicable handlers and
compare their results. This can be used to catch errors and provide a
kind of redundancy. Or if we have partial information provided by
each handler, such as a numerical interval, the results of different
handlers can be combined to provide better information.

3.4.2 Caching
With the use of tries we have eliminated redundant evaluation of
argument predicates. We can do better by using abstraction to
eliminate the evaluation of predicates altogether. A predicate identifies
a set of objects that are distinguished from all other objects; in other
words, the predicate and the set it distinguishes are effectively the
same. In our trie implementation, we use the equality of the predicate
procedures to avoid redundancy; otherwise we would have redundant
edges in the trie and it would be no help at all. This is also why the use
of combinations of predicates doesn't mix well with the trie
implementation.

The problem here is that we want to build an index that
discriminates objects according to predicates, but the opacity of
procedures makes them unreliable when used as keys to the index.
What we'd really like is to assign a name to the set distinguished by a
given predicate. If we had a way to get that name from a given object
by superficial examination, we could avoid computing the predicate at
all. This name is a “type”; but in order to avoid confusion we will refer
to this name as a tag.

Given a way to get a tag from an object, we can make a cache that
saves the handler resulting from a previous dispatch and reuses it for
other dispatches whose arguments have the same tag pattern. But in
the absence of explicitly attached tags, there are limitations to this
approach, because we can only discriminate objects that share an
implementation-specified representation. For example, it's easy to
distinguish between a number and a symbol, but it's not easy to



distinguish a prime number, because it's unusual for an
implementation to represent them specially.

We will return to the problem of explicit tagging in section 3.5, but
in the meantime it is still possible to make a useful cache using the
representation tags from the Scheme implementation. Given an
implementation-specific procedure implementation-type-name to
obtain the representation tag of an object, we can make a cached
dispatch store:

(define a-cached-dispatch-store

  (cache-wrapped-dispatch-store (make-trie-dispatch-store)

                                implementation-type-name))

This dispatch store wraps a cache around a trie dispatch store, but it
could just as well wrap a simple dispatch store.

The heart of the cached dispatch store is a memoizer built on a hash
table. The key for the hash table is the list of representation tags
extracted by the implementation-type-name procedure from the
arguments. By passing implementation-type-name into this
dispatch-store wrapper (as get-key) we can use it to make cached
dispatch stores for more powerful tag mechanisms that we will
develop soon.

(define (cache-wrapped-dispatch-store dispatch-store get-key)

  (let ((get-handler

         (simple-list-memoizer

           eqv?

           (lambda (args) (map get-key args))

           (dispatch-store ’get-handler))))

    (lambda (message)

      (case message

        ((get-handler) get-handler)

        (else (dispatch-store message))))))

The call to simple-list-memoizer wraps a cache around its last
argument, producing a memoized version of it. The second argument
specifies how to get the cache key from the procedure's arguments.
The eqv? argument specifies how the tags will be identified in the
cache.



Exercise 3.15: Cache performance
Using the same performance tool we introduced for exercise 3.14 on
page 130, make measurements for execution of (test-stormer-
counts) and (fib 20) in the cached version of dispatch with the
same generic arithmetics explored in exercise 3.14. Record your
results. How do they compare?



3.5 Efficient user-defined types

In section 3.4.2 we introduced tags as part of a caching mechanism for
dispatch. Each argument is mapped to a tag, and the list of tags is then
used as a key in a cache to obtain the handler. If the cache has a
handler associated with this list of tags, it is used. If not, the trie of
predicates is used to find the appropriate handler and it is entered into
the cache associated with the list of tags.

This mechanism is pretty crude: the predicates that can be used for
the applicability specifications are restricted to those that always give
the same boolean value for any two objects with the same tag. So the
discrimination of types cannot be any finer than the available tags. The
tags were implementation-specific symbols, such as pair, vector, or
procedure. So this severely limits the possible predicates. We could
not have rules that distinguish between integers that satisfy even-
integer? and integers that satisfy odd-integer?, for example.

What is needed is a system of tagging that makes it computationally
easy to obtain the tag associated with a data item, but where the tags
are not restricted to a small set of implementation-specific values. This
can be accomplished by attaching a tag to each data item, either with
an explicit data structure or via a table of associations.

We have several problems interwoven here: we want to use
predicates in applicability specifications; we want an efficient
mechanism for dispatch; and we want to be able to specify
relationships between predicates that can be used in the dispatch. For
example, we want to be able to say that the predicate integer? is the
disjunction of the predicates even-integer? and odd-integer?, and
also that integer? is the disjunction of positive-integer?,
negative-integer?, and zero?.

To capture such relationships we need to put metadata on the
predicates; but adding an associative lookup to get the metadata of a
predicate, as we did with the arity of a function (on page 28), adds too
much overhead, because the metadata will contain references to other
tags, and chasing these references must be efficient.

One way out is to register the needed predicates. Registration



creates a new kind of tag, a data structure that is associated with the
predicate. The tag will be easy to attach to objects that are accepted by
the predicate. The tag will provide a convenient place to store
metadata.

We will construct a system in which each distinct object can have
only one tag and where relationships between predicates can be
declared. This may appear to be overly simple, but it is adequate for
our purposes.

3.5.1 Predicates as types
Let's start with some simple predicates. For example, the primitive
procedure exact-integer? is preregistered in our system as a simple
predicate:

(predicate? exact-integer?)

#t

Now let's define a new predicate that's not a primitive. We will build
it on this particularly slow test for prime numbers.

(define (slow-prime? n)

  (and (n:exact-positive-integer? n)

       (n:>= n 2)

       (let loop ((k 2))

         (or (n:> (n:square k) n)

             (and (not (n:= (n:remainder n k) 0))

                  (loop (n:+ k 1)))))))

Note that all of the arithmetic operators are prefixed with n: to ensure
that we get the underlying Scheme operations.

We construct the prime-number? abstract predicate, with a name
for use in error messages and a criterion, slow-prime?, for an object
to be considered a prime number:

(define prime-number?

  (simple-abstract-predicate ’prime-number slow-prime?))

The procedure simple-abstract-predicate creates an abstract
predicate, which is a clever trick for memoizing the result of an
expensive predicate (in this case slow-prime?). An abstract predicate
has an associated constructor that is used to make a tagged object,



consisting of the abstract predicate's tag and an object. The
constructor requires that the object to be tagged satisfies the expensive
predicate. The resulting tagged object satisfies the abstract predicate,
as well as carrying its tag. Consequently the tagged object can be tested
for the property defined by the expensive predicate by using the fast
abstract predicate (or, equivalently, by dispatching on its tag).

For example, the abstract predicate prime-number? is used to tag
objects that are verified prime numbers, for the efficient
implementation of generic dispatch. This is important because we do
not want to execute slow-prime? during the dispatch to determine
whether a number is prime. So we build a new tagged object, which
contains both a tag (the tag for prime-number?) and a datum (the raw
prime number). When a generic procedure is handed a tagged object,
it can efficiently retrieve its tag and use that as a cache key.

In order to make tagged objects, we use predicate-constructor
to get the constructor associated with the abstract predicate:

(define make-prime-number

  (predicate-constructor prime-number?))

(define short-list-of-primes

  (list (make-prime-number 2)

        (make-prime-number 7)

        (make-prime-number 31)))

The constructor make-prime-number requires that its argument be
prime, as determined by slow-prime?: the only objects that can be
tagged by this constructor are prime numbers.

(make-prime-number 4)

;Ill-formed data for prime-number: 4

3.5.2 Relationships between predicates
The sets that we can define with abstract predicates can be related to
one another. For example, the primes are a subset of the positive
integers. The positive integers, the even integers, and the odd integers
are subsets of the integers. This is important because any operation
that is applicable to an integer is applicable to any element of any
subset, but there are operations that can be applied to an element of a
subset that cannot be applied to all elements of an enclosing superset.



For example, the even integers can be halved without leaving a
remainder, but that is not true of the full integers.

When we defined prime-number?, we effectively defined a set of
objects. But that set has no relation to the set defined by exact-
integer?:

(exact-integer? (make-prime-number 2))

#f

We would like these sets to be properly related, which is done by
adding some metadata to the predicates themselves:

(set-predicate<=! prime-number? exact-integer?)

This procedure set-predicate<=! modifies the metadata of its
argument predicates to indicate that the set defined by the first
argument is a (non-strict) subset of the set defined by the second
argument. In our case, the set defined by prime-number? is declared
to be a subset of the set defined by exact-integer?. Once this is
done, exact-integer? will recognize our objects:

(exact-integer? (make-prime-number 2))

#t

3.5.3 Predicates are dispatch keys
The abstract predicates we have defined are suitable for use in generic
dispatch. Even better, they can be used as cache keys to make dispatch
efficient. As we described above, when a predicate is registered, a new
tag is created and associated with the predicate. All we need is a way to
get the tag for a given object: the procedure get-tag does this.

If we pass get-tag to cache-wrapped-dispatch-store as its get-
key argument, we have a working implementation. However, since the
set defined by a predicate can have subsets, we need to consider a
situation where there are multiple potential handlers for some given
arguments. There are a number of possible ways to resolve this
situation, but the most common is to identify the “most specific”
handler by some means, and invoke that one. Since the subset relation
is a partial order, it may not be clear which handler is most specific, so
the implementation must resolve the ambiguity by independent



means.
Here is one such implementation. It uses a procedure rule< to sort

the matching rules into an appropriate order, then chooses a handler
from the result.30

(define (make-subsetting-dispatch-store-maker choose-handler)

  (lambda ()

    (let ((delegate (make-simple-dispatch-store)))

      (define (get-handler args)

        (let ((matching

               (filter (lambda (rule)

                        (is-generic-handler-applicable?

                         rule args))

                      ((delegate ’get-rules)))))

         (and (n:pair? matching)

              (choose-handler    ; from sorted handlers

               (map cdr (sort matching rule<))

               ((delegate ’get-default-handler))))))

     (lambda (message)

       (case message

         ((get-handler) get-handler)

         (else (delegate message)))))))

The procedure make-most-specific-dispatch-store chooses the
first of the sorted handlers to be the effective handler:

(define make-most-specific-dispatch-store

  (make-subsetting-dispatch-store-maker

   (lambda (handlers default-handler)

     (car handlers))))

Another possible choice is to make a “chaining” dispatch store, in
which each handler gets an argument that can be used to invoke the
next handler in the sorted sequence. This is useful for cases where a
subset handler wants to extend the behavior of a superset handler
rather than overriding it. We will see an example of this in the clock
handler of the adventure game in section 3.5.4.

(define make-chaining-dispatch-store

  (make-subsetting-dispatch-store-maker

   (lambda (handlers default-handler)

     (let loop ((handlers handlers))

       (if (pair? handlers)

           (let ((handler (car handlers))

                 (next-handler (loop (cdr handlers))))



             (lambda args

               (apply handler (cons next-handler args))))

           default-handler)))))

Either one of these dispatch stores can be made into a cached
dispatch store by adding a caching wrapper:

(define (make-cached-most-specific-dispatch-store)

  (cache-wrapped-dispatch-store

     (make-most-specific-dispatch-store)

     get-tag))

(define (make-cached-chaining-dispatch-store)

  (cache-wrapped-dispatch-store

     (make-chaining-dispatch-store)

     get-tag))

Then we create the corresponding generic-procedure constructors:

(define most-specific-generic-procedure

  (generic-procedure-constructor

   make-cached-most-specific-dispatch-store))

(define chaining-generic-procedure

  (generic-procedure-constructor

   make-cached-chaining-dispatch-store))

3.5.4 Example: An adventure game
One traditional way to model a world is “object-oriented
programming.” The idea is that the world being modeled is made up of
objects, each of which has independent local state, and the coupling
between the objects is loose. Each object is assumed to have particular
behaviors. An object may receive messages from other objects, change
its state, and send messages to other objects. This is very natural for
situations where the behavior we wish to model does not depend on
the collaboration of multiple sources of information: each message
comes from one other object. This is a tight constraint on the
organization of a program.

There are other ways to break a problem into pieces. We have
looked at “arithmetic” enough to see that the meaning of an operator,
such as *, can depend on the properties of multiple arguments. For
example, the product of a number and a vector is a different operation



from the product of two vectors or of two numbers. This kind of
problem is naturally formulated in terms of generic procedures.31

Consider the problem of modeling a world made of “places,”
“things,” and “people” with generic procedures. How should the state
variables that are presumed to be local to the entities be represented
and packaged? What operations are appropriately generic over what
kinds of entities? Since it is natural to group entities into types (or
sets) and to express some of the operations as appropriate for all
members of an inclusive set, how is subtyping to be arranged? Any
object-oriented view will prescribe specific answers to these design
questions; here we have more freedom, and must design the
conventions that will be used.

To illustrate this process we will build a world for a simple
adventure game. There is a network of rooms connected by passages
and inhabited by a variety of creatures, some of which are autonomous
in that they can wander around. There is an avatar that is controlled
by the player. There are things, some of which can be picked up and
carried by the creatures. There are ways that the creatures can
interact: a troll can bite another creature and damage it; any creature
can take a thing carried by another creature.

Every entity in our world has a set of named properties. Some of
these are fixed and others are changeable. For example, a room has
exits to other rooms. These represent the topology of the network and
cannot be changed. A room also has contents, such as the creatures
who are currently in the room and things that may be acquired. The
contents of a room change as creatures move around and as they carry
things to and from other rooms. We will computationally model this
set of named properties as a table from names to property values.

There is a set of generic procedures that are appropriate for this
world. For example, some things, such as books, creatures, and the
avatar, are movable. In every case, moving a thing requires deleting it
from the contents of the source, adding it to the contents of the
destination, and changing its location property. This operation is the
same for books, people, and trolls, all of which are members of the
“movable things” set.

A book can be read; a person can say something; a troll can bite a
creature. To implement these behaviors there are specific properties of



books that are different from the properties of people or those of trolls.
But these different kinds of movable things have some properties in
common, such as location. So when such a thing is instantiated, it
must make a table for all of its properties, including those inherited
from more inclusive sets. The rules for implementing the behavior of
operators such as move must be able to find appropriate handlers for
manipulating the properties in each case.

The game
Our game is played on a rough topological map of MIT. There are
various autonomous agents (non-player characters), such as students
and officials. The registrar, for example, is a troll. There are movable
and immovable things, and movable things can be taken by an
autonomous agent or the player's avatar. Although this game has little
detail, it can be expanded to be very interesting.

We create a session with an avatar named gjs who appears in a
random place. The game tells the player about the environment of the
avatar.

(start-adventure ’gjs)

You are in dorm-row

You see here: registrar

You can exit: east

Since the registrar is here it is prudent to leave! (He may bite, and
after enough bites the avatar will die.)

(go ’east)

gjs leaves via the east exit

gjs enters lobby-7

You are in lobby-7

You can see: lobby-10 infinite-corridor

You can exit: up west east

alyssa-hacker enters lobby-7

alyssa-hacker says: Hi gjs

ben-bitdiddle enters lobby-7

ben-bitdiddle says: Hi alyssa-hacker gjs

registrar enters lobby-7

registrar says: Hi ben-bitdiddle alyssa-hacker gjs

Notice that several autonomous agents arrive after the avatar, and that



they do so one at a time. So we see that the report is for an interval of
simulated time rather than a summary of the state at an instant. This
is an artifact of our implementation rather than a deliberate design
choice.

Unfortunately the registrar has followed, so it's time to leave again.

(say "I am out of here!")

gjs says: I am out of here!

(go ’east)

gjs leaves via the east exit

gjs enters lobby-10

You are in lobby-10

You can see: lobby-7 infinite-corridor great-court

You can exit: east south west up

(go ’up)

gjs leaves via the up exit

gjs enters 10-250

You are in 10-250

You see here: blackboard

You can exit: up down

Room 10-250 is a lecture hall, with a large blackboard. Perhaps we can
take it?

(take-thing ’blackboard)

blackboard is not movable

So sad—gjs loves blackboards. Let's keep looking around.

(go ’up)

gjs leaves via the up exit

gjs enters barker-library

You are in barker-library

You see here: engineering-book

You can exit: up down

An earth-shattering, soul-piercing scream is heard...

Apparently, a troll (maybe the registrar) has eaten someone. However,
here is a book that should be takable, so we take it and return to the
lecture hall.

(take-thing ’engineering-book)

gjs picks up engineering-book



(go 'down)

gjs leaves via the down exit

gjs enters 10-250

You are in 10-250

Your bag contains: engineering-book

You see here: blackboard

You can exit: up down

From the lecture hall we return to lobby-10, where we encounter
lambda-man, who promptly steals our book.

(go ’down)

gjs leaves via the down exit

gjs enters lobby-10

gjs says: Hi lambda-man

You are in lobby-10

Your bag contains: engineering-book

You see here: lambda-man

You can see: lobby-7 infinite-corridor great-court

You can exit: east south west up

alyssa-hacker enters lobby-10

alyssa-hacker says: Hi gjs lambda-man

lambda-man takes engineering-book from gjs

gjs says: Yaaaah! I am upset!

The object types
To create an object in our game, we define some properties with make-
property, define a type predicate with make-type, get the predicate's
associated instantiator with type-instantiator, and call that
instantiator with appropriate arguments.

How do we make a troll? The make-troll constructor for a troll
takes arguments that specify the values for properties that are specific
to the particular troll being constructed. The troll will be created in a
given place with a restlessness (proclivity to move around), an
acquisitiveness (proclivity to take things), and a hunger (proclivity
to bite other people).

(define (create-troll name place restlessness hunger)

  (make-troll ’name name

              ’location place

              ’restlessness restlessness

              ’acquisitiveness 1/10



              ’hunger hunger))

We create two trolls: grendel and registrar. They are initially placed
in random places, with some random proclivities.

(define (create-trolls places)

  (map (lambda (name)

         (create-troll name

                       (random-choice places)

                       (random-bias 3)

                       (random-bias 3)))

       ’(grendel registrar)))

The procedure random-choice randomly selects one item from the list
it is given. The procedure random-bias chooses a number (in this case
1, 2, or 3) and returns its reciprocal.

The troll type is defined as a predicate that is true only of trolls. The
make-type procedure is given a name for the type and a descriptor of
the properties that are specific to trolls. (Only trolls have a hunger
property.)

(define troll:hunger

  (make-property ’hunger ’predicate bias?))

(define troll?

  (make-type 'troll (list troll:hunger)))

The troll is a specific type of autonomous agent. Thus the set of trolls is
a subset of (<=) the set of autonomous agents.

(set-predicate<=! troll? autonomous-agent?)

The constructor for trolls is directly derived from the predicate that
defines the type, as is the accessor for the hunger property.

(define make-troll

  (type-instantiator troll?))

(define get-hunger

  (property-getter troll:hunger troll?))

Autonomous agents are occasionally stimulated by the “clock” to
take some action. The distinctive action of the troll is to bite other
people.



(define-clock-handler troll? eat-people!)

A biased coin is flipped to determine whether the troll is hungry at the
moment. If it is hungry it looks for other people (trolls are people
too!), and if there are some it chooses one to bite, causing the victim to
suffer some damage. The narrator describes what happens.

(define (eat-people! troll)

  (if (flip-coin (get-hunger troll))

      (let ((people (people-here troll)))

        (if (n:null? people)

            (narrate! (list (possessive troll) "belly rumbles")

                      troll)

            (let ((victim (random-choice people)))

              (narrate! (list troll "takes a bite out of"

                              victim)

                        troll)

              (suffer! (random-number 3) victim))))))

The procedure flip-coin generates a random fraction between 0 and
1. If that fraction is greater than the argument, it returns true. The
procedure random-number returns a positive number less than or
equal to its argument.

The procedure narrate! is used to add narration to the story. The
second argument to narrate! (troll in the above code) may be
anything that has a location. The narrator announces its first
argument in the location thus determined. One can only hear that
announcement if one is in that location.

We said that a troll is a kind of autonomous agent. The autonomous
agent type is defined by its predicate, which specifies the properties
that are needed for such an agent. We also specify that the set of
autonomous agents is a subset of the set of all persons.

(define autonomous-agent:restlessness

  (make-property 'restlessness ’predicate bias?))

(define autonomous-agent:acquisitiveness

  (make-property ’acquisitiveness ’predicate bias?))

(define autonomous-agent?

  (make-type ’autonomous-agent

             (list autonomous-agent:restlessness

                   autonomous-agent:acquisitiveness)))



(set-predicate<=! autonomous-agent? person?)

The constructor for trolls specified values for the properties
restlessness and acquisitiveness, which are needed to make an
autonomous agent, in addition to the hunger property specific to
trolls. Since trolls are autonomous agents, and autonomous agents are
persons, there must also be values for the properties of a person and
all its supersets. In this system almost all properties have default
values that are automatically filled if not specified. For example, all
objects need names; the name was specified in the constructor for
trolls. But a person also has a health property, necessary to
accumulate damage, and this property value was not explicitly
specified in the constructor for trolls.

The generic procedures
Now that we have seen how objects are built, we will look at how to
implement their behavior. Specifically, we will see how generic
procedures are an effective tool for describing complex behavior.

We defined get-hunger, which is used in eat-people!, in terms of
property-getter. A getter for a property of objects of a given type is
implemented as a generic procedure that takes an object as an
argument and returns the value of the property.

(define (property-getter property type)

  (let ((procedure    ; the getter

         (most-specific-generic-procedure

          (symbol ’get- (property-name property))

          1           ; arity

          #f)))       ; default handler

    (define-generic-procedure-handler procedure

      (match-args type)

      (lambda (object)

        (get-property-value property object)))

    procedure))

This shows the construction of a generic procedure with a generated
name (for example get-hunger) that takes one argument, and the
addition of a handler that does the actual access. The last argument to
most-specific-generic-procedure is the default handler for the



procedure; specifying #f means that the default is to signal an error.
We also used define-clock-handler to describe an action to take

when the clock ticks. That procedure just adds a handler to a generic
procedure clock-tick!, which is already constructed.

(define (define-clock-handler type action)

  (define-generic-procedure-handler clock-tick!

    (match-args type)

    (lambda (super object)

      (super object)

      (action object))))

This generic procedure supports “chaining,” in which each handler
gets an extra argument (in this case super) that when called causes
any handlers defined on the supersets of the given object to be called.
The arguments passed to super have the same meaning as the
arguments received here; in this case there's just one argument and it
is passed along. This is essentially the same mechanism used in
languages such as Java, though in that case it's done with a magic
keyword rather than an argument.

The clock-tick! procedure is called to trigger an action, not to
compute a value. Notice that the action we specify will be taken after
any actions specified by the supersets. We could have chosen to do the
given action first and the others later, just by changing the order of the
calls.

The real power of the generic procedure organization is illustrated
by the mechanisms for moving things around. For example, when we
pick up the engineering book, we move it from the room to our bag.
This is implemented with the move! procedure:

(define (move! thing destination actor)

  (generic-move! thing

                 (get-location thing)

                 destination

                 actor))

The move! procedure is implemented in terms of a more general
procedure generic-move! that takes four arguments: the thing to be
moved, the thing's current location, its destination location, and the
actor of the move procedure. This procedure is generic because the
movement behavior potentially depends on the types of all of the



arguments.
When we create generic-move! we also specify a very general

handler to catch cases that are not covered by more specific handlers
(for specific argument types).

(define generic-move!

  (most-specific-generic-procedure ’generic-move! 4 #f))

(define-generic-procedure-handler generic-move!

  (match-args thing? container? container? person?)

  (lambda (thing from to actor)

    (tell! (list thing "is not movable")

           actor)))

The procedure tell! sends the message (its first argument) to the
actor that is trying to move the thing. If the actor is the avatar, the
message is displayed.

In the demo we picked up the book. We did that by calling the
procedure take-thing with the name engineering-book. This
procedure resolves the name to the thing and then calls take-thing!,
which invokes move!:

(define (take-thing name)

  (let ((thing (find-thing name (here))))

    (if thing

        (take-thing! thing my-avatar)))

  'done)

(define (take-thing! thing person)

  (move! thing (get-bag person) person))

There are two procedures here. The first is a user-interface procedure
to give the player a convenient way of describing the thing to be taken
by giving its name. It calls the second, an internal procedure that is
also used in other places.

To make this work we supply a handler for generic-move! that is
specialized to moving mobile things from places to bags:

(define-generic-procedure-handler generic-move!

  (match-args mobile-thing? place? bag? person?)

  (lambda (mobile-thing from to actor)

    (let ((new-holder (get-holder to)))

      (cond ((eqv? actor new-holder)



             (narrate! (list actor

                             "picks up" mobile-thing)

                       actor))

            (else

             (narrate! (list actor

                             "picks up" mobile-thing

                             "and gives it to" new-holder)

                       actor)))

      (if (not (eqv? actor new-holder))

          (say! new-holder (list "Whoa! Thanks, dude!")))

      (move-internal! mobile-thing from to))))

If the actor is taking the thing, the actor is the new-holder. But it is
possible that the actor is picking up the thing in the place and
putting it into someone else's bag!

The say! procedure is used to indicate that a person has said
something. Its first argument is the person speaking, and the second
argument is the text being spoken. The move-internal! procedure
actually moves the object from one place to another.

To drop a thing we use the procedure drop-thing to move it from
our bag to our current location:

(define (drop-thing name)

  (let ((thing (find-thing name my-avatar)))

    (if thing

        (drop-thing! thing my-avatar)))

  'done)

(define (drop-thing! thing person)

  (move! thing (get-location person) person))

The following handler for generic-move! enables dropping a thing.
The actor may be dropping a thing from its own bag or it might pick
up something from another person's bag and drop it.

(define-generic-procedure-handler generic-move!

  (match-args mobile-thing? bag? place? person?)

  (lambda (mobile-thing from to actor)

    (let ((former-holder (get-holder from)))

      (cond ((eqv? actor former-holder)

             (narrate! (list actor

                             "drops" mobile-thing)

                       actor))

            (else

             (narrate! (list actor



                             "takes" mobile-thing

                             "from" former-holder

                             "and drops it")

                       actor)))

      (if (not (eqv? actor former-holder))

          (say! former-holder

                (list "What did you do that for?")))

      (move-internal! mobile-thing from to))))

Yet another generic-move! handler provides for gifting or stealing
something, by moving a thing from one bag to another bag. Here the
behavior depends on the relationships among the actor, the original
holder of the thing, and the final holder of the thing.

(define-generic-procedure-handler generic-move!

  (match-args mobile-thing? bag? bag? person?)

  (lambda (mobile-thing from to actor)

    (let ((former-holder (get-holder from))

          (new-holder (get-holder to)))

      (cond ((eqv? from to)

             (tell! (list new-holder "is already carrying"

                          mobile-thing)

                    actor))

            ((eqv? actor former-holder)

             (narrate! (list actor

                             "gives" mobile-thing

                             "to" new-holder)

                       actor))

            ((eqv? actor new-holder)

             (narrate! (list actor

                             "takes" mobile-thing

                             "from" former-holder)

                       actor))

            (else

             (narrate! (list actor

                             "takes" mobile-thing

                             "from" former-holder

                             "and gives it to" new-holder)

                       actor)))

      (if (not (eqv? actor former-holder))

          (say! former-holder (list "Yaaaah! I am upset!")))

      (if (not (eqv? actor new-holder))

          (say! new-holder

                (list "Whoa! Where'd you get this?")))

      (if (not (eqv? from to))

          (move-internal! mobile-thing from to)))))



Another interesting case is the motion of a person from one place to
another. This is implemented by the following handler:

(define-generic-procedure-handler generic-move!

  (match-args person? place? place? person?)

  (lambda (person from to actor)

    (let ((exit (find-exit from to)))

      (cond ((or (eqv? from (get-heaven))

                 (eqv? to (get-heaven)))

             (move-internal! person from to))

            ((not exit)

             (tell! (list "There is no exit from" from

                          "to" to)

                    actor))

            ((eqv? person actor)

             (narrate! (list person "leaves via the"

                             (get-direction exit) "exit")

                       from)

             (move-internal! person from to))

            (else

             (tell! (list "You can't force"

                          person

                          "to move!")

                    actor))))))

There can be many other handlers, but the important thing to see is
that the behavior of the move procedure can depend on the types of all
of the arguments. This provides a clean decomposition of the behavior
into separately understandable chunks. It is rather difficult to achieve
such an elegant decomposition in a traditional object-oriented design,
because in such a design one must choose one of the arguments to be
the principal dispatch center. Should it be the thing being moved? the
source location? the target location? the actor? Any one choice will
make the situation more complex than necessary.

As Alan Perlis wrote: “It is better to have 100 functions operate on
one data structure than 10 functions on 10 data structures.”

Implementing properties
We saw that the objects in our game are created by defining some
properties with make-property, defining a type predicate with make-
type, getting the predicate's associated instantiator with type-



instantiator, and calling that instantiator with appropriate
arguments. This simple description hides a complex implementation
that is worth exploring.

The interesting aspect of this code is that it provides a simple and
flexible mechanism for managing the properties that are associated
with a type instance, which is robust when subtyping is used.
Properties are represented by abstract objects rather than names, in
order to avoid namespace conflicts when subtyping. For example, a
type mammal might have a property named forelimb that refers to a
typical front leg. A subtype bat of mammal might have a property with
the same name that refers to a different object, a wing! If the
properties were specified by their names, then one of these types
would need to change its name. In this implementation, the property
objects are specified by themselves, and two properties with the same
name are distinct.

The procedure make-property creates a data type containing a
name, a predicate, and a default-value supplier. Its first argument is
the property's name, and the rest of the arguments are a property list
with additional metadata about the property. For example, see the
definition of troll:hunger on page 143. We will ignore how the
property list is parsed since it's not interesting.32

(define (make-property name . plist)

  (guarantee n:symbol? name)

  (guarantee property-list? plist)

  (%make-property name

                  (get-predicate-property plist)

                  (get-default-supplier-property plist)))

A property is implemented as a Scheme record [65], which is a data
structure that consists of a set of named fields. It is defined by
elaborate syntax that specifies a constructor, a type predicate, and an
accessor for each field:

(define-record-type <property>

    (%make-property name predicate default-supplier) 

    property?

  (name property-name)

  (predicate property-predicate)

  (default-supplier property-default-supplier))



We chose to give the primitive record constructor %make-property a
name with an initial percent sign (%). We often use the initial percent
sign to indicate a low-level procedure that will not be used except to
support a higher-level abstraction. The %make-property procedure is
used only in make-property, which in turn is used by other parts of
the system.

Given a set of properties, we can construct a type predicate:

(define (make-type name properties)

  (guarantee-list-of property? properties)

  (let ((type

         (simple-abstract-predicate name instance-data?)))

    (%set-type-properties! type properties)

    type))

A type predicate is an ordinary abstract predicate (see page 134) along
with the specified properties, which are stored in an association using
%set-type-properties!. Those specified properties aren't used by
themselves; instead they are aggregated with the properties of the
supersets of this type. The object being tagged satisfies instance-
data?. It is an association from the properties of this type to their
values.

(define (type-properties type)

  (append-map %type-properties

              (cons type (all-supertypes type))))

And type-instantiator builds the instantiator, which accepts a
property list using property names as keys, parses that list, and uses
the resulting values to create the instance data, which associates each
property of this instance with its value. It also calls the set-up!
procedure, which gives us the ability to do type-specific initialization.

(define (type-instantiator type)

  (let ((constructor (predicate-constructor type))

        (properties (type-properties type)))

    (lambda plist

      (let ((object

             (constructor (parse-plist plist properties))))

        (set-up! object)

        object))))



Exercise 3.16: Adventure warmup
Load the adventure game and start the simulation by executing the
command (start-adventure your-name). Walk your avatar around.
Find some takable object and take it. Drop the thing you took in some
other place.



Exercise 3.17: Health
Change the representation of the health of a person to have more
possible values than are given in the initial game. Scale your
representation so that the probability of death from a troll bite is the
same as it was before you changed the representation. Also make it
possible to recover from a nonfatal troll bite, or other loss of health, by
some cycles of rest.



Exercise 3.18: Medical help
Make a new place, the medical center. Make it easily accessible from
the Green building and the Gates tower. If a person who suffers a
nonfatal injury (perhaps from a troll bite) makes it to the medical
center, their health may be restored.



Exercise 3.19: A palantir
Make a new kind of thing called a palantir (a “seeing stone,” as in
Tolkien's Lord of the Rings). Each instance of a palantir can
communicate with any other instance; so if there is a palantir in
lobby-10 and another in dorm-row, you can observe the goings-on in
dorm-row by looking into a palantir in lobby-10. (Basically, a palantir
is a magical surveillance camera and display.)

Plant a few immovable palantiri in various parts of the campus, and
enable your avatar to use one. Can you keep watch on the positions of
your friends? Of the trolls?

Can you make an autonomous person other than your avatar use a
palantir for some interesting purpose? The university's president
might be a suitable choice.



Exercise 3.20: Invisibility
Make an “Invisibility Cloak” that any person (including an avatar) can
acquire to become invisible, thus invulnerable to attacks by trolls.
However, the cloak must be discarded (dropped) after a short time,
because possession of the cloak slowly degrades the person's health.



Exercise 3.21: Your turn
Now that you have had an opportunity to play with our “world” of
characters, places, and things, extend this world in some substantial
way, limited only by your creativity. One idea is to have mobile places,
such as elevators, which have entrances and exits that change with
time, and are perhaps controllable by persons. But that is just one
suggestion—invent something you like!



Exercise 3.22: Multiple players
This is a pretty big project rather than a simple exercise.

a. Extend the adventure game so that there can be multiple
players, each controlling a personal avatar.

b. Make it possible for players to be on different terminals.



3.6 Summary

The use of generic procedures introduced in this chapter is both
powerful and dangerous—it is not for the faint of heart. Allowing the
programmer to dynamically change the meanings of the primitive
operators of the language can result in unmanageable code. But if we
are careful to extend operators to only new types of arguments,
without changing their behavior on the original types, we can get
powerful extensions without breaking any old software. Most
programming languages do not allow the freedom to modify the
existing behavior of primitive operators, for good reason. However,
many of the ideas here are portable and can be safely used. For
example, in many languages, as diverse as C++ and Haskell, one can
overload operators to have new meanings on user-defined types.

Extensions of arithmetic are pretty tame, but we must be aware of
the problems that can come up, and the subtle bugs that can be
evoked: addition of integers is associative, but addition of floating-
point numbers is not associative; multiplication of numbers is
commutative, but multiplication of matrices is not. And if we extend
addition to be concatenation of strings, that extension is not
commutative. On the good side, it is straightforward to extend
arithmetic to symbolic expressions containing literal numbers as well
as purely numerical quantities. It is not difficult, but lots of work, to
continue to expand to functions, vectors, matrices, and tensors.
However, we eventually run into real problems with the ordering of
extensions—symbolic vectors are not the same as vectors with
symbolic coordinates! We also can get into complications with the
typing of symbolic functions.

One beautiful example of the power of extensible generics is the
almost trivial implementation of forward-mode automatic
differentiation by extending each primitive arithmetic procedure to
handle differential objects. However, making this work correctly with
higher-order functions that return functions as values was difficult.
(Of course, most programmers writing applications that need
automatic differentiation do not need to worry about this



complication.)
In our system the “type” is represented by a predicate that is true of

elements of that type. In order to make this efficient we introduced a
predicate registration and tagging system that allowed us to add
declarations of relationships among the types. For example, we could
have prime numbers be a subset of the integers, so numbers that
satisfy the user-defined prime? predicate automatically satisfy the
integer? predicate.

Once we have user-defined types with declared subset relationships,
we enter a new realm of possibilities. We demonstrated this with a
simple but elegantly extensible adventure game. Because our generic
procedures dispatch on the types of all of their arguments, the
descriptions of the behaviors of the entities in our adventure game are
much simpler and more modular than they would be if we dispatched
on the first argument to produce a procedure that dispatched on the
second argument, and so on. So modeling these behaviors in a typical
single-dispatch objectoriented system would be more complicated.

We used tagged data to efficiently implement extensible generic
procedures. The data was tagged with the information required to
decide which procedures to use to implement the indicated operations.
But once we have the ability to tag data, there are other uses tags can
be put to. For example, we may tag data with its provenance, or how it
was derived, or the assumptions it was based on. Such audit trails may
be useful for access control, for tracing the use of sensitive data, or for
debugging complex systems [128]. So there is power in the ability to
attach arbitrary tags to any data item, in addition to the use of tags to
determine the handlers for generic procedures.

 

1 ODE means “ordinary differential equation,” meaning a differential
equation with a single independent variable.

2 Because we anticipated varying the meanings of many operators in
the MIT/GNU Scheme system, we made a special set of operators
that name primitive procedures we might need later. We named the
copies with the prefix n:. In MIT/GNU Scheme the original



primitive procedures are always available, with their original
names, in the system-global-environment, so we could have
chosen to get them from there.

3 A recent Scheme standard [109] introduced “libraries,” which
provide a way to specify bindings of the free references in a
program. We could use libraries to connect an arithmetic with the
code that uses it. But here we demonstrate the ideas by modifying
the read-eval-print environment.

4 The procedure pp prints a list “prettily” by using line breaks and
indentation to reveal the list's structure.

5 You may have noticed that in these symbolic expressions the
additions and multiplications are expressed as binary operations,
even though in Scheme they are allowed to take many arguments;
the installer implements the n-ary versions as nested binary
operations. Similarly, the unary - is converted to negate.
Subtractions and divisions with multiple arguments are also
realized as nested binary operations.

6 The procedure default-object produces an object that is different
from any possible constant. The procedure default-object?
identifies that value.

7 Another difference you may have noticed is that the constant-
generator and operation-generator procedures for the numeric
arithmetic have only one formal parameter, while the generator
procedures for the symbolic extender have two. The symbolic
arithmetic is built on a base arithmetic, so the constant or operation
for the base arithmetic is given to the generator.

8 The call (any-arg 3 p1? p2?) will produce an applicability
specification with seven cases, because there are seven ways that
this applicability can be satisfied: ((p2? p2? p1?) (p2? p1?
p2?) (p2? p1? p1?) (p1? p2? p2?) (p1? p2? p1?) (p1? p1?

p2?) (p1? p1? p1?))

9 disjoin* is a predicate combinator. It accepts a list of predicates
and produces the predicate that is their disjunction.



10 Making this arbitrary choice is not really reasonable. For example, a
vector's zero is not only distinct from the numerical zero, but also is
not the same for vectors of different dimension. We have chosen to
ignore this problem here.

11 At the APL-79 conference Joel Moses is reported to have said: “APL
is like a beautiful diamond—flawless, beautifully symmetrical. But
you can't add anything to it. If you try to glue on another diamond,
you don't get a bigger diamond. Lisp is like a ball of mud. Add more
and it's still a ball of mud—it still looks like Lisp.” But Joel denies
that he said this.

12 A mechanism of this sort is implicit in most “object-oriented
languages,” but it is usually tightly bound to ontological
mechanisms such as inheritance. The essential idea of extensible
generics appears in SICP [1] and is usefully provided in tinyCLOS
[66] and SOS [52].A system of extensible generics, based on
predicate dispatching, is used to implement the mathematical
representation system in SICM [121]. A nice exposition of predicate
dispatching is given by Ernst [33].The idea that generic procedures
are a powerful tool has been percolating in the Lisp community for
decades. The fullest development of these ideas is in the Common
Lisp Object System (CLOS) [42]. The underlying structure is
beautifully expressed in the Metaobject Protocol [68]. It is further
elaborated in the “Aspect-oriented programming” movement [67].

13 generic-metadata-getter and generic-metadata-default-
getter retrieve the get-handler procedure and the get-default-
handler procedure from the dispatch-store instance stored in the
metadata of the generic procedure.

14 The term automatic differentiation was introduced by Wengert
[129] in 1964.

15 The derivative here is the derivative of a function, not the derivative
of an expression. If f is a function, the derivative Df of f is a new
function, which when applied to x gives a value Df (x). Its relation
to an expression derivative is:



16 The automatic differentiation code we present here is derived from
the code that we wrote to support the advanced classical mechanics
class that Sussman teaches at MIT with Jack Wisdom [121, 122].

17 Differential objects like these are sometimes referred to as dual
numbers. Dual numbers, introduced by Clifford in 1873 [20],
extend the real numbers by adjoining one new element E with the
property є2 = 0. However, in order to conveniently compute
multiple derivatives (and derivatives of functions with multiple
arguments) it helps to introduce a new infinitesimal part for each
independent variable. So our differential algebra space is much
more complicated than the single-E dual number space. Our
differential objects are also something like the hyperreal numbers,
invented by Edwin Hewitt in 1948 [59].

18 This idea was “discovered” by Dan Zuras (then of Hewlett Packard
Corporation) and Gerald Jay Sussman in an all-night programming
binge in 1992. We assumed at the time that this had also been
discovered by many others, and indeed it had [129, 12], but we were
overjoyed when we first understood the idea ourselves! See [94] for
a formal exposition of automatic differentiation.

19 We will get to binary functions soon. This is just to make the idea
clear before things get complicated. We will extend to n-ary
functions in section 3.3.2

20 We are showing the definitions of handlers but we are not showing
the assignment of the handlers here.

21 For an alternative strategy, see exercise 3.8 on page 113.

22 The procedure iota returns a list of consecutive integers from 0
through (length args).

23 The formal algebraic details were clarified by Hal Abelson around
1994, as part of an effort to fix a bug. The code was painfully



reworked in 1997 by Sussman with the help of Hardy Mayer and
Jack Wisdom.

24 A nicer version would use record structures, but that would be
harder to debug without having a way to print them nicely.

25 The fact that any factor of any highest-order term in the series can
be used was a central insight of Hal Abelson in the 1994 revision of
this idea.

26 A bug of this class was pointed out to us by Alexey Radul in 2011.
The general problem was first identified by Siskind and Perlmutter
in 2005 [111]: the differential tags created to distinguish the
infinitesimals incrementing an argument for a derivative
calculation can be confused in the evaluation of a derivative of a
function whose value is a function. The deferred derivative
procedure may be called more than once, using the tag that was
created for the outer derivative calculation. More recently, Jeff
Siskind showed us another bug that plagued our patch for the first
one: there was a potential collision between a tag occurring in an
argument and a tag inherited from the lexical scope of a derivative
function. These very subtle bugs are explained, along with a careful
analysis of ways to fix them, in a beautiful paper by Manzyuk et al.
[87].

27 This is carefully explained in Manzyuk et al. [87].

28 The trie data structure was invented by Edward Fredkin in the early
1960s.

29 The names printed for predicates by with-predicate-counts do
not end in a question mark; for example the name printed for the
predicate number? is simply number. The reason for this is obscure,
and the curious are welcome to track it down in the code.

30 The procedure is-generic-handler-applicable? abstracts the
handler checking that we previously did using predicates-match?
in get-handler on page 98. This gives us a hook for later
elaboration.



31 In languages such as Haskell and Smalltalk, multiple arguments are
handled by dispatching on the first argument, producing an object
that then dispatches on the second argument, etc.

32 The make-property procedure uses a helper called guarantee to
do argument checking. The first argument to guarantee is a
predicate (preferably a registered predicate) and the second
argument is an object to be tested. There may be a third argument,
to identify the caller. If the object doesn't satisfy the predicate,
guarantee signals an error. The procedure guarantee-list-of
works similarly except that it requires the object to be a list of
elements satisfying the predicate.

We have used assert earlier in this text. assert is more convenient
for posing assertions that must be true where they are made.
guarantee is preferable for the more restricted case of argument
type checking.



4 
Pattern Matching

Pattern matching is a technology that supports the creation of
domain-specific languages and other systems that should have an
additive character.

Pattern matching is a generalization of equality testing. In equality
testing we compare two objects to determine that they have the same
structure and contents. In pattern matching, we generalize equality
testing to allow some parts of the structure and contents to be
unspecified. A pattern specifies certain parts of the data exactly, but it
has “holes” (pattern variables) that match the unspecified parts of the
data. We may impose constraints on what a pattern variable can
match, and we may require that multiple instances of the same pattern
variable match the same thing.

A pattern can be matched to a part of a larger datum; the context of
the match is unspecified. The ability to work with partial information
means that only the specified parts of the pattern are assumptions
about the data matched; there are few or no assumptions about the
unspecified parts.

This property of pattern matching enables the construction of very
flexible rule-based systems. In a rule-based system one can add new
rules to add new capabilities, though there are difficulties associated
with how rules are defined and how they interact with one another.
For example, if more than one rule is applicable, the results may
depend on the ordering of application. We already encountered
problems with the interaction of rules, in the boardgame rule
interpreter. (See the critique on page 63.)

Besides the use of patterns to match data that meets a partial
specification, patterns can themselves represent partially known
information. Merging such patterns (unification) can generate more
specific information than the individual patterns contribute.



Another use of pattern matching is as a generalization of generic
procedures. Generic procedures allow us to do miraculous things by
modulating the meanings of the free variables in a program. We may
think of the program that employs a generic procedure, such as that
bound to +, as advertising for a handler that can do the job of “+ing”
the arguments supplied. A handler attached to a generic procedure is
applicable if the arguments supplied satisfy the predicates provided
when it was attached. But the language for advertising jobs that need
to be done is rather limited—all we have is a single symbol, in this case
+. If we instead use patterns to advertise jobs to be done and other
patterns to advertise procedures that might do those jobs, we have a
much richer language: pattern-directed invocation.



4.1 Patterns

The elementary laws of algebra can be expressed as equivalence of
patterns:

This is the distributive law of multiplication over addition. It says that
we can replace one side with the other without changing the value of
the expression. Each side of the law is a pattern, with pattern variables
a, b, and c, and pattern constants × and +. What the law says is that if
we find an algebraic expression that is the product of something and a
sum of terms, we can replace it with a sum of two products, and vice
versa.

Let's see how to organize programs based on pattern matching. A
key idea here will be compilation of patterns into combinators that are
the pieces of a matcher. In section 4.2 we will demonstrate this in a
term-rewriting system for elementary algebra.

A Language of Patterns
The first job is to make up our language of patterns. We will start with
something simple. We will make our patterns out of Lisp (Scheme)
lists. Unlike the mathematical example above, we will not have
reserved symbols, such as and +, so we will have to distinguish pattern
variables from pattern constants. A pattern variable can be
represented by a list beginning with the query symbol, ?. This is a
traditional choice. So in this language the patterns that make up the
distributive law may be represented as follows, assuming that we are
manipulating Lisp prefix mathematical expressions:

(* (? a) (+ (? b) (? c)))

(+ (* (? a) (? b)) (* (? a) (? c)))



You might complain that we could have used distinguished
symbols, such as ?a instead of the long-winded (? a). That would be
fine, but that choice would make it a bit harder to extend, say if we
want a variable that is restricted to match only numbers. Of course, we
can add syntax later if it is helpful, but remember Alan Perlis's maxim:
“Syntactic sugar causes cancer of the semicolon.” With our simple list
representation we are able to restrict the pattern variable (? a) to
match only numbers by adding the predicate describing the restriction
to its list representation: (? a ,number?).

One constraint on our design of the matcher is that the second
pattern above should match

(+ (* (cos x) (exp y)) (* (cos x) (sin z)))

where a=(cos x), b=(exp y), and c=(sin z).
But it should not match

(+ (* (cos x) (exp y)) (* (cos (+ x y)) (sin z)))

because there is no consistent assignment possible for (? a), unless,
somehow, x=(+ x y).1 We will learn about that sort of situation when
we study unification matching in section 4.4; here we will decide that
there is no match possible.

Another constraint on the matcher, which will have an important
influence on its structure, is the need to match an unknown number of
consecutive elements in a list. For example, suppose we want to make
a rule to replace a sum of squares of a sine and a cosine with 1, even if
they are not consecutive in the sum:

(+ ... (expt (sin theta) 2) ... (expt (cos theta) 2) ...)

(+ 1 ... ... ...)

The ... here may stand for many terms. We will use a segment
variable, written with the prefix ??, to match many terms. So the
pattern we will write is:

(+ (?? t1)

   (expt (sin (? x)) 2)

   (?? t2)

   (expt (cos (? x)) 2)

   (?? t3))



We needed three segment variables here. The segment variable (??
t1) will match the terms before the sine term, (?? t2) will match the
terms between the sine term and the cosine term, and (?? t3) will
match the terms after the cosine term.

Segment variables have a profound effect, because we don't know
how long a segment is until we find the next part that matches, and we
may be able to match the same data item many ways. For example,
there may be squares of both sines and cosines of two different angles
in the same sum. Even simpler, the pattern

(a (?? x) (?? y) (?? x) c)

can match the datum

(a b b b b b b c)

in four different ways. (Notice that the segment variable x must eat up
the same number of bs in the two places it appears in the pattern.) So
the matcher must do a search over the space of possible assignments
to the segment variables.



4.2 Term rewriting

Term-rewriting systems are powerful tools for creating domain-
specific languages for manipulating expression-like information. If we
have a syntactic system of expressions, where we may need to replace
some subexpressions with “equivalent” subexpressions, we can often
use a rule-based term-rewriting system to describe those
transformations. For example, many compiler optimizations can be
expressed as local rewrites of program fragments in a larger context.
The essential features of a term-rewriting system are the use of a
pattern matcher to identify the information to be transformed, and a
template system for instantiating the replacement. There has been
extensive research [72] into the problem of constructing convergent
term-rewriting systems from equational theories (systems of
“equivalent” expressions), but we won't get into that here. Also, there
is a superficial similarity between the patterns matched against and
the templates for instantiation, which may suggest the possibility of
making bidirectional rules; we won't look at that either. First we
develop a simple unidirectional system, in which patterns are used to
recognize inputs and templates are used to make outputs.

Here is an approximation to some algebraic simplification rules:

(define algebra-1

  (rule-simplifier

    (list

    ;; Associative law of addition

    (rule ’(+ (? a) (+ (? b) (? c)))

          ‘(+ (+ ,a ,b) ,c))

    ;; Commutative law of multiplication

    (rule ’(* (? b) (? a))

          (and (expr<? a b)

               ‘(* ,a ,b)))

    ;; Distributive law of multiplication over addition

    (rule ’(* (? a) (+ (? b) (? c)))

          ‘(+ (* ,a ,b) (* ,a ,c))))))

There are three rules in algebra-1. The first rule implements the
associative law of addition, the second implements the commutative



law of multiplication, and the third implements the distributive law of
multiplication over addition.

Each rule is composed of two parts: a pattern to match a
subexpression, and a consequent expression. If the pattern matches,
the consequent is evaluated. If the value of the consequent is #f the
rule is not applicable. Otherwise the result of the evaluation replaces
the matched subexpression. Notice that we use the backquote
mechanism described on page 391 to simplify writing the consequent
expression.

The rules are gathered in a list for the rule-simplifier procedure.
The result is a simplifier procedure that can be applied to an algebraic
expression.

(algebra-1 ’(* (+ y (+ z w)) x))

(+ (+ (* x y) (* x z)) (* w x))

Notice the restriction predicate, expr<?, in the consequent of the
rule for the commutative law:

(rule ’(* (? b) (? a))

      (and (expr<? a b)

           ‘(* ,a ,b)))

If the consequent expression returns #f, that match is considered to
have failed. The system backtracks into the matcher to look for an
alternative match; if none are forthcoming, the rule is not applicable.
In the commutative law the restriction predicate expr<? imposes an
ordering on algebraic expressions. The reason for this restriction is left
as exercise 4.1.



Exercise 4.1: Guard expressions
Why is the (expr<? a b) restriction necessary in the commutative
law? What would go wrong if there were no restriction?

4.2.1 Segment variables in algebra
The algebra-2 rule system is far more interesting. It is built with the
assumption that addition and multiplication are n-ary operations. We
need segment variables to make this work. We also use the number?
predicate in variable restrictions to support rules for numerical
simplification.

(define algebra-2

  (rule-simplifier

   (list

    ;; Sums

    (rule ‘(+ (? a))

          a)                    ; unary + is identity

    (rule ‘(+ (?? a) (+ (?? b)) (?? c))

          ‘(+ ,@a ,@b ,@c))     ; associative: use n-ary + 

    (rule ‘(+ (?? a) (? y) (? x) (?? b))

          (and (expr<? x y)     ; commutative

               ‘(+ ,@a ,x ,y ,@b)))

    ;; Products

    (rule ‘(* (? a))

          a)                    ; unary * is identity

    (rule ‘(* (?? a) (* (?? b)) (?? c))

          ‘(* ,@a ,@b ,@c))     ; associative: use n-ary *

    (rule ‘(* (?? a) (? y) (? x) (?? b))

          (and (expr<? x y)     ; commutative

               ‘(* ,@a ,x ,y ,@b)))

    ;; Distributive law

    (rule ‘(* (?? a) (+ (?? b)) (?? c))

          ‘(+ ,@(map (lambda (x) ‘(* ,@a ,x ,@c)) b)))

    ;; Numerical simplifications

   (rule  ‘(+ 0 (?? x))

          ‘(+ ,@x))

    (rule ‘(+ (? x ,number?) (? y ,number?) (?? z))

          ‘(+ ,(+ x y) ,@z))



    (rule ‘(* 0 (?? x))

          0)

    (rule ‘(* 1 (?? x))

          ‘(* ,@x))

    (rule ‘(* (? x ,number?) (? y ,number?) (?? z))

          ‘(* ,(* x y) ,@z))

    )))

With algebra-2 we implement some numerical simplifications, in
addition to dealing with multiple arguments to sums and products.
Notice that we used the backquote mechanism to build patterns that
include the predicate number? as restrictions on the variables, in
addition to its use for constructing the consequent expressions. For
further understanding of the simplifier, see exercise 4.2.

Now we can get these results:

(algebra-2 ’(* (+ y (+ z w)) x))

(+ (* w x) (* x y) (* x z))

(algebra-2 ’(+ (* 3 (+ x 1)) -3))

(* 3 x)

At this point we can see how it may be possible to extend such a
system to simplify large classes of algebraic expressions.



Exercise 4.2: Term ordering
According to the predicate expr<?, an expression that is explicitly a
number is less than any expression that is not explicitly a number.

a. In algebra-2 how does the ordering on expressions imposed by
the commutative laws make the numerical simplification rules
effective?

b. Suppose that the commutative laws did not force an ordering.
How would we have to express the numerical simplification rules?
Explain why numerical simplification would become very
expensive.



Exercise 4.3: Sorting efficiency

The ordering in the commutative laws evolves an order n2 bubble sort
on the terms of a sum and the factors of a product. This can get pretty
bad if there are many terms, as in a serious algebra problem. Is there
some way in this system to make a more efficient sort? If not, why not?
If so, how would you arrange it?



Exercise 4.4: Collecting terms
The system we have described does not collect like terms. For
example:

(algebra-2 ’(+ (* 4 x) (* 3 x)))

(+ (* 3 x) (* 4 x))

Make a new system algebra-3 that includes rules that cause the
collection of like terms, leaving the result as a sum of terms.
Demonstrate your solution. Your solution must be able to handle
problems like

(algebra-3

  ’(+ y (* x -2 w) (* x 4 y) (* w x) z (* 5 z) (* x w) (* x y 

3)))

(+ y (* 6 z) (* 7 x y))

4.2.2 Implementation of rule systems
Now that we have some experience with the use of a pattern-based
rule system, let's dive in to see how it works.

We implement a rule as a procedure that matches the rule's pattern
against a given expression. If the match succeeds, the rule evaluates its
consequent in an environment in which the pattern variables are
bound to their matched data. Rule procedures take success and failure
continuations that can be used to backtrack into the consequent or
pattern-match part of a rule.2

The rule-simplifier procedure used above is a constructor for a
simple recursive simplifier. It produces simplify-expression, a
procedure that takes an expression and uses the rules to simplify the
expression. It recursively simplifies all the subexpressions of an
expression and then applies the rules to simplify the resulting
expression. It does this repeatedly until the process converges. Thus
the expression returned is a fixed point of the simplification process.

(define (rule-simplifier the-rules)

  (define (simplify-expression expression)

    (let ((subexpressions-simplified



           (if (list? expression)

               (map simplify-expression expression)

               expression)))

      (try-rules subexpressions-simplified the-rules

        (lambda (result fail)   ; A: success continuation

          (simplify-expression result))

        (lambda ()              ; B: failure continuation

          subexpressions-simplified))))

  simplify-expression)

The procedure try-rules just scans the list of rules, sequencing the
scan by means of the succeed and fail continuations.

(define (try-rules data rules succeed fail)

  (let per-rule ((rules rules))

    (if (null? rules)

        (fail)               ; out of rules: go to B above

        (try-rule data

                  (car rules)

                  succeed    ; if rule succeeds go to A above

                  (lambda () ; if rule fails try other rules

                    (per-rule (cdr rules)))))))

(define (try-rule data rule succeed fail)

  (rule data succeed fail))

Rule construction is implemented by the procedure make-rule,
which takes a rule pattern and a handler that implements the
consequent expression. For example, the commutative law rule on
page 161 can be made directly with make-rule:

(make-rule ’(* (? b) (? a))

  (lambda (b a)

    (and (expr<? a b)

         ‘(* ,a ,b))))

The handler (lambda (b a) ...) needs to get arguments that are the
values of the pattern variables named a and b from the dictionary
produced by the matcher procedure. The rule applies the handler to a
list of these values in the order in which they appear in the pattern.
Thus the handler must be written with its parameters in that order.

The rule constructor make-rule compiles the pattern into a match
procedure. The rule it returns is a procedure that uses that match
procedure to match the data. If the match succeeds, the rule applies



the handler to values of the pattern variables resulting from the match.
We will learn how a pattern is compiled into a match procedure in

section 4.3; all we need to know here is that the match procedure can
be run using run-matcher and that if the match succeeds, the third
argument to run-matcher is called with a dictionary. The dictionary
dict is a mapping of pattern variables to the subexpressions that they
were matched against. If the match fails, run-matcher returns #f, and
the rule fails.

(define (make-rule pattern handler)

  (let ((match-procedure (match:compile-pattern pattern)))

    (define (the-rule data succeed fail)

      (or (run-matcher match-procedure data

            (lambda (dict)

              (let ((result

                     (apply handler

                            (match:all-values dict))))

                (and result

                     (succeed result

                              (lambda () #f))))))

          (fail)))

    the-rule))

The procedure match:all-values returns the values of the pattern
variables in the order in which they appear in the pattern.

4.2.3 Aside: Magic macrology
Compare the rule definition given on page 161:

(rule ’(* (? b) (? a))

      (and (expr<? a b)

           ‘(* ,a ,b)))

with what make-rule needs for its arguments:

(make-rule ’(* (? b) (? a))

  (lambda (b a)

    (and (expr<? a b)

         ‘(* ,a ,b))))

The names a and b are repeated: they occur both in the pattern and
in the parameter list of the handler, in the same order. This is both
obnoxious to write and error-prone, because we must remember to



repeat the names, and we can make a mistake if we repeat them
incorrectly or in the wrong order.

This is a case for syntactic abstraction, otherwise known as a
macro. The following rather magical code fragment transforms the
rule definition into the desired call to make-rule:

(define-syntax rule

  (er-macro-transformer

   (lambda (form rename compare)

     (let ((pattern (cadr form))

          (handler-body (caddr form))

          (r-make-rule (rename 'make-rule))

          (r-lambda (rename ’lambda)))

      ‘(,r-make-rule ,pattern

                     (,r-lambda

                      ,(match:pattern-names pattern)

                      ,handler-body))))))

We can at least partially check this macro with the following magic
incantation that expands the macros that appear in an expression:

(pp (syntax ’(rule ’(* (? b) (? a))

                   (and (expr<? a b)

                        ‘(* ,a ,b)))

            (the-environment)))

(make-rule ’(* (? b) (? a))

           (lambda (b a)

             (and (expr<? a b)

                  (list ’* a b))))

We see that the rule expands into a call to make-rule with the
pattern and its handler procedure. This is the expression that is
evaluated to make the rule. In more conventional languages, a macro,
such as rule, expands directly into code that is substituted for the
macro call. However, this process is not referentially transparent,
because the macro expansion may use symbols that conflict with the
user's symbols. In Scheme we try to avoid this problem, allowing a
user to write hygienic macros that cannot cause conflicts. But this is
more complicated than just substituting one expression for another.
We will not try to explain the problems or the solutions here, but we
will just use the solutions described in the MIT/GNU Scheme
reference manual [51].



4.2.4 Pattern-directed invocation
The rule executive, try-rules, can also be used to implement
procedures that use patterns for dispatching on input properties. The
arguments to a pattern operator are matched against the pattern
operator's rule pattern. The consequent of the matching rule computes
the value to be returned.

For example, we could write the traditional factorial procedure,
distributing the conditional as follows:

(define factorial

  (make-pattern-operator

   (rule ’(0) 1)

   (rule ‘((? n ,positive?))

         (* n (factorial (- n 1))))))

(factorial 10)

3628800

We could also use this mechanism to build procedures whose
behavior depends on the number of arguments supplied. For example,
the Lisp - operator is negation when applied to one argument and
subtraction when applied to multiple arguments:

(define -

  (make-pattern-operator

   (rule ’((? x)) (n:- 0 x))

   (rule ’((? x) (?? y)) (n:- x (apply n:+ y)))))

We can allow a pattern operator to be extended with additional
rules dynamically. Such pattern operators are analogous to generic
procedures, allowing the programmer to distribute the rule definitions
nonlocally. For example, in a peephole optimizer we may want to
group various optimizations with different parts of the code generator
of a compiler.

(define peephole (make-pattern-operator))

(attach-rule! peephole

  (rule ’((push (? reg1))

          (pop (? reg2)))

        (if (eqv? reg1 reg2)

            ’()



            ‘((move ,reg1 ,reg2)))))

(attach-rule! peephole

  (rule ‘((or (? reg) (? const1 ,unsigned-integer?))

          (or (? reg) (? const2 ,unsigned-integer?)))

        ‘((or ,reg

              ,(bitwise-or const1 const2)))))

The first rule could be in the control-structure part of the optimizer,
and the second rule could be located with the logical arithmetic part of
the optimizer.

Here is one way to implement pattern operators. The last rule
passed to make-pattern-operator is the default rule. It is always
tried last, no matter what other rules may be added later.

(define (make-pattern-operator . rules)

  (let ((rules

         (cons ’rules

               (if (pair? rules)

                   (except-last-pair rules)

                   ’())))

        (default-rule

         (and (pair? rules)

              (last rules))))

    (define (the-operator . data)

      (define (succeed value fail) value)

      (define (fail)

        (error "No applicable operations:" data))

      (try-rules data

                 (cdr rules)

                 succeed

                 (if default-rule

                     (lambda ()

                       (try-rule data

                                 default-rule

                                 succeed

                                 fail))

                     fail)))

    (set-pattern-metadata! the-operator rules)

    the-operator))

We use set-pattern-metadata! to attach the rule list as a “sticky
note” to an operator, and we use pattern-metadata to retrieve it in
the code below. We have procedures to add a rule to the front
(override-rule!) or to the end (attach-rule!) of an operator's rule



list:

(define (attach-rule! operator rule)

  (let ((metadata (pattern-metadata operator)))

    (set-cdr! metadata

              (append (cdr metadata)

                      (list rule)))))

(define (override-rule! operator rule)

  (let ((metadata (pattern-metadata operator)))

    (set-cdr! metadata

              (cons rule (cdr metadata)))))



4.3 Design of the matcher

Now that we have seen some of the power of pattern matching, we will
explore how it works. Our matcher is constructed from a family of
match procedures (or matchers), and some combinators that combine
them to produce compound matchers.3 Each primitive element of the
pattern is represented by a primitive matcher, and the only
combination, list, is represented by a combinator that combines
matchers for the list elements to make a compound one. All match
procedures take three arguments: a list containing data to be matched,
a dictionary of bindings of pattern variables, and a continuation
procedure (succeed) to be called if the match is successful. The
arguments to succeed must be the new dictionary resulting from the
match and the number of items that were consumed from the input
list. This number will be used for determining where to proceed after a
segment match returns. A match procedure returns #f if the match is
unsuccessful.

There are three primitive match procedures and one combinator.
Let's go through them. We will also need a small procedure that we
can pass to a match procedure as its succeed argument to report the
result:

(define (result-receiver dict n-eaten)

  ‘(success ,(match:bindings dict) ,n-eaten))

Pattern constants
The procedure match:eqv takes a pattern constant, such as x, and
produces a match procedure, eqv-match, that succeeds if and only if
the first data item is equal (using eqv?) to the pattern constant. It does
not add to the dictionary. The second argument to succeed is the
number of items matched, which is 1 for this match procedure.

(define (match:eqv pattern-constant)

  (define (eqv-match data dictionary succeed)

    (and (pair? data)



         (eqv? (car data) pattern-constant)

         (succeed dictionary 1)))

  eqv-match)

For example:

(define x-matcher (match:eqv ’x))

(x-matcher ’(x) (match:new-dict) result-receiver)

(success () 1)

(x-matcher ’(y) (match:new-dict) result-receiver)

#f

Element variables
The procedure match:element is used to make a match procedure,
element-match, for a pattern variable, such as (? x), that is intended
to match a single item.

When matching an element variable there are two possibilities:
either the element variable already has a value or it does not yet have a
value. If the variable has a value, it is bound in the dictionary. In that
case the match succeeds if and only if the binding's value is equal
(using equal?) to the first data item. If the variable does not have a
value, it is not bound. In that case the match succeeds, extending the
dictionary by adding a binding of the variable to the first data item. In
either case of success, we indicate that the number of items consumed
is 1.

(define (match:element variable)

  (define (element-match data dictionary succeed)

    (and (pair? data)

         (let ((binding (match:lookup variable dictionary)))

           (if binding

               (and (equal? (match:binding-value binding)

                            (car data))

                    (succeed dictionary 1))

               (succeed (match:extend-dict variable

                                           (car data)

                                           dictionary)

                        1)))))

  element-match)



Here are some examples. A match binding is a list: the first element
is the variable name; the second element is the value; and the third
element is the variable's type (here all are ? element variables).

((match:element ’(? x))

’(a) (match:new-dict) result-receiver)

(success ((x a ?)) 1)

((match:element ’(? x))

’(a b) (match:new-dict) result-receiver)

(success ((x a ?)) 1)

((match:element ’(? x))

’((a b) c) (match:new-dict) result-receiver)

(success ((x (a b) ?)) 1)

Segment variables
The procedure match:segment is used to make a match procedure,
segment-match, for a pattern variable, such as (?? x), that is
intended to match a sequence of items. A segment-variable matcher is
more complicated than an element-variable matcher because it can
consume an unknown number of data items. Thus a segment matcher
must inform its caller not only of the new dictionary, but also of how
many items from the data were eaten.

When matching a segment variable there are two possibilities:
either the segment variable already has a value or it does not yet have
a value. If the segment variable has a value, the value must match the
data; this is checked by match:segment-equal? on page 174. If the
segment variable does not yet have a value, it must be given one.

The matcher, segment-match, returned by match:segment,
succeeds with some initial sublist of the data, (list-head data i),
as a possible assignment to the segment variable. (It starts with i=0,
assuming that the segment will eat no items from the data.) However,
if that success leads to a later failure in the match, the segment
matcher tries to eat one more element than it had already tried (by
executing (lp (+ i 1))). If the segment matcher runs out of data
items, it fails to match. This is the key to the backtracking search that
is needed when there are segment variables.



(define (match:segment variable)

  (define (segment-match data dictionary succeed)

    (and (list? data)

         (let ((binding (match:lookup variable dictionary)))

           (if binding

               (match:segment-equal?

                data

                (match:binding-value binding)

                (lambda (n) (succeed dictionary n)))

               (let ((n (length data)))

                 (let lp ((i 0))

                   (and (<= i n)

                        (or (succeed (match:extend-dict

                                     variable

                                     (list-head data i)

                                     dictionary)

                                    i)

                           (lp (+ i 1))))))))))

  segment-match)

For example:

((match:segment ’(?? a))

 ’(z z z) (match:new-dict) result-receiver)

(success ((a () ??)) 0)

Of course, a zero-length segment is okay.
If we want to see all of the possible matches, we change the result

receiver to return #f after printing the successful result. This causes
the matcher procedure to come up with an alternative value, if
possible.

(define (print-all-results dict n-eaten)

  (pp ‘(success ,(match:bindings dict) ,n-eaten))

  ;; by returning #f we force backtracking.

  #f)

((match:segment ’(?? a))

 ’(z z z) (match:new-dict) print-all-results)

(success ((a () ??)) 0)

(success ((a (z) ??)) 1)

(success ((a (z z) ??)) 2)

(success ((a (z z z) ??)) 3)

#f

Now, returning to the case of a segment variable that already has a



value, we need to make sure that the value matches an initial segment
of the data. This is handled by match:segment-equal?. It compares
the elements of the value against the data. If that works, it returns by
calling ok (the procedure passed as its third argument) with the
number of elements consumed from the data (which must be the
length of the value); otherwise it returns #f.

(define (match:segment-equal? data value ok)

  (let lp ((data data) (value value) (n 0))

    (cond ((pair? value)

           (if (and (pair? data)

                    (equal? (car data) (car value)))

               (lp (cdr data) (cdr value) (+ n 1))

               #f))

           ((null? value) (ok n))

           (else #f))))

Matching lists
Finally, there is the match:list combinator, which takes a list of
match procedures and makes a match procedure that matches a data
list if and only if the given matchers eat up all of the elements in the
data list. It applies the matchers in succession. Each matcher tells the
list combinator how many items to jump over before passing the
remaining data to the next matcher.

(define (match:list matchers)

  (define (list-match data dictionary succeed)

    (and (pair? data)

         (let lp ((data-list (car data))

                  (matchers matchers)

                 (dictionary dictionary))

           (cond ((pair? matchers)

                  ((car matchers)

                   data-list

                   dictionary

                   (lambda (new-dictionary n)

                     ;; The essence of list matching:

                     (lp (list-tail data-list n)

                         (cdr matchers)

                         new-dictionary))))

                 ((pair? data-list) #f)  ;unmatched data

                 ((null? data-list) (succeed dictionary 1))

                 (else #f)))))



  list-match)

Notice that the matcher, list-match, returned by the match:list
combinator has exactly the same interface as the other matchers,
allowing it to be incorporated into a combination. The fact that all of
the basic match procedures have exactly the same interface makes this
a system of combinators.

Now we can make a matcher that matches a list of any number of
elements, starting with the symbol a, ending with the symbol b, and
with a segment variable (?? x) between them, by the combination:

((match:list (list (match:eqv ’a)

                   (match:segment ’(?? x))

                   (match:eqv ’b)))

 ’((a 1 2 b))

 (match:new-dict)

 result-receiver)

(success ((x (1 2) ??)) 1)

This was a successful match. The dictionary returned has exactly one
entry: x=(1 2), and the match ate precisely one element (the list (a 1
2 b)) from the list supplied.

((match:list (list (match:eqv ’a)

                   (match:segment ’(?? x))

                   (match:eqv ’b)))

 ’((a 1 2 b 3))

 (match:new-dict)

 result-receiver)

#f

This was a failure, because there was nothing to match the 3 after the b
in the input data.

The dictionary
The dictionary we will use is just a headed list of bindings. Each
binding is a list of the variable's name, its value, and its type.

(define (match:new-dict)

  (list 'dict))

(define (match:bindings dict)



  (cdr dict))

(define (match:new-bindings dict bindings)

  (cons 'dict bindings))

(define (match:extend-dict var value dict)

  (match:new-bindings dict

                      (cons (match:make-binding var value)

                            (match:bindings dict))))

(define (match:lookup var dict)

  (let ((name

         (if (symbol? var)

             var

             (match:var-name var))))

    (find (lambda (binding)

            (eq? name (match:binding-name binding)))

          (match:bindings dict))))

(define (match:make-binding var value)

  (list (match:var-name var)

        value

        (match:var-type var)))

(define match:binding-name car)

(define match:binding-type caddr)

(define match:binding-value

  (simple-generic-procedure 'match:binding-value 1 cadr))

The accessor match:binding-value is just cadr, but is made generic
to allow future extensions. This will be needed in the code supporting
section 4.5.

4.3.1 Compiling patterns
We can automate the construction of pattern matchers from patterns
with an elementary compiler. The compiler produces as its value a
match procedure appropriate for the pattern it is given, which has
exactly the same interface as the elementary matchers given above.

The match-procedure interface is convenient for composing
matchers, but not very friendly to humans. For playing with the
matcher it is more convenient to use:

(define (run-matcher match-procedure datum succeed)



  (match-procedure (list datum)

                   (match:new-dict)

                   (lambda (dict n)

                     (and (= n 1)

                          (succeed dict)))))

With this interface we are hiding several details about match
procedures: we wrap the incoming datum in a list; we check that
exactly one element of that list (the datum) has been matched; and we
provide the initial dictionary.

Some simple examples are:

(run-matcher

 (match:compile-pattern ’(a ((? b) 2 3) (? b) c))

 ’(a (1 2 3) 2 c)

 match:bindings)

#f

(run-matcher

 (match:compile-pattern ’(a ((? b) 2 3) (? b) c))

 ’(a (1 2 3) 1 c)

 match:bindings)

((b 1 ?))

As we saw before, some patterns involving segment variables may
match in many ways, and we can elicit all of the matches by failing
back into the matcher to select the next one, until they are all
exhausted:

(run-matcher

 (match:compile-pattern ’(a (?? x) (?? y) (?? x) c))

 ’(a b b b b b b c)

 print-all-matches)

((y (b b b b b b) ??) (x () ??))

((y (b b b b) ??) (x (b) ??))

((y (b b) ??) (x (b b) ??))

((y () ??) (x (b b b) ??))

#f

The possible matches require both instances of (?? x) to match the
same data.

The procedure print-all-matches prints the bindings and forces a
failure.

(define (print-all-matches dict)



  (pp (match:bindings dict))

  #f)

To make this compiler we need to define the syntax of pattern
variables. For now we have a very simple syntax: a pattern variable is a
list of the type (? or ??) and the name.

(define (match:var-type var)

  (car var))

(define (match:var-type? object)

  (memq object match:var-types))

(define match:var-types ’(? ??))

(define (match:named-var? object)

  (and (pair? object)

       (match:var-type? (car object))

       (n:>= (length object) 2)

       (symbol? (cadr object))))

(define (match:element-var? object)

  (and (match:var? object)

       (eq? ’? (match:var-type object))))

(define (match:segment-var? object)

  (and (match:var? object)

       (eq? ’?? (match:var-type object))))

This code is more complex than one might expect, because we will
extend the variable syntax in section 4.5 and some of the exercises.

(define match:var-name

  (simple-generic-procedure 'match:var-name 1

    (constant-generic-procedure-handler #f)))

(define-generic-procedure-handler match:var-name

  (match-args match:named-var?)

  cadr)

The default handler is a procedure that always returns false, and at
this time there is only one substantive handler, which retrieves the
name of a named variable.

We also make the predicate that determines if its argument is a
match variable generic, although at this time the only objects that



satisfy match:var? are named variables.

(define match:var?

  (simple-generic-procedure 'match:var? 1

    (constant-generic-procedure-handler #f)))

(define-generic-procedure-handler match:var?

  (match-args match:named-var?)

  (constant-generic-procedure-handler #t))

The compiler maps a pattern to the corresponding matcher:

(define (match:compile-pattern pattern)

  (cond ((match:var? pattern)

         (case (match:var-type pattern)

           ((?) (match:element pattern))

           ((??) (match:segment pattern))

           (else (error "Unknown var type:" pattern))))

        ((list? pattern)

         (match:list (map match:compile-pattern pattern)))

        (else  ; constant

         (match:eqv pattern))))

By varying this compiler, we can change the syntax of patterns any way
we like.

(run-matcher

 (match:compile-pattern ’(a ((? b) 2 3) (? b) c))

 ’(a (1 2 3) 1 c)

 match:bindings)

((b 1 ?))



Exercise 4.5: Backtracking
In the example on page 177 we got multiple matches, by returning #f
from the success procedure print-all-matches. This is probably
pretty mysterious. How does it work? Explain, in a short but clear
paragraph, how the sequence of matches is generated.

4.3.2 Match-variable restrictions
Often we want to restrict the kind of object that can be matched by a
pattern variable. For example, we may want to make a pattern in
which a variable can match only a positive integer. One way to do this,
which we used in our term-rewriting system in section 4.2.1, is to allow
a variable to carry a predicate for testing the datum for acceptability.
For example, we may be interested in finding positive integer powers
of sine functions. We could write the pattern we want as follows:

‘(expt (sin (? x)) (? n ,exact-positive-integer?))

We cannot use simple quotation for such a pattern, because the
predicate expression (here exact-positive-integer?) must be
evaluated before being included in the pattern. As in term rewriting
(section 4.2), we use the backquote mechanism to do this.

To make a matcher that can check that data satisfies such a
predicate, we add a single line to match:element:

(define (match:element variable)

  (define (element-match data dictionary succeed)

    (and (pair? data)

         (match:satisfies-restriction? variable (car data))

         (let ((binding (match:lookup variable dictionary)))

           (if binding

               (and (equal? (match:binding-value binding)

                            (car data))

                    (succeed dictionary 1))

               (succeed (match:extend-dict variable

                                           (car data)

                                           dictionary)

                        1)))))

  element-match)



(define (match:satisfies-restriction? var value)

  (or (not (match:var-has-restriction? var))

      ((match:var-restriction var) value)))



Exercise 4.6: Pattern alternatives: choice is good
An interesting way to extend our pattern language is to introduce a
choice operator:

(?:choice pattern ...)

This should compile into a matcher that tries to match each of the
given patterns in order from left to right, returning the first successful
match, or #f if none match. (This should remind you of regular
expression “alternation” (see page 40), but the name “choice” is more
traditional in pattern matching.)

For example:

(run-matcher

 (match:compile-pattern ’(?:choice a b (? x) c))

 ’z

 match:bindings)

((x z ?))

(run-matcher

 (match:compile-pattern

 ‘((? y) (?:choice a b (? x ,string?) (? y ,symbol?) c)))

 ’(z z)

 match:bindings)

((y z ?))

(run-matcher

 (match:compile-pattern ‘(?:choice b (? x ,symbol?)))

  ’b

  print-all-matches)

()

((x b ?))

#f

To do: Implement a new matcher procedure, match:choice, for this
new pattern schema. Augment the pattern compiler appropriately.



Exercise 4.7: Naming in patterns
Another extension is to provide named patterns, analogous to
Scheme's letrec.

Naming allows shorter, more modular patterns while also
supporting recursive subpatterns, including mutually recursive
subpatterns.

For instance, the pattern:

(?:pletrec ((odd-even-etc (?:choice () (1 (?:ref even-odd-etc))))

            (even-odd-etc (?:choice () (2 (?:ref odd-even-

etc)))))

    (?:ref odd-even-etc))

should match all lists of the following form (including the empty list):

(1 (2 (1 (2 (1 ...)))))

Here, ?:pletrec introduces a block of mutually recursive pattern
definitions while ?:ref substitutes a defined pattern in place (in order
to distinguish such references from literal symbols like a and from
pattern variables like (? x)).

To do: Implement these new ?:pletrec and ?:ref pattern
schemas. One approach is to implement new matcher procedures,
match:pletrec and match:ref, then augment the pattern compiler
appropriately. Other approaches may also work. Explain your
approach briefly if it is subtle or non-obvious.

To think (before you do!): In a proper environment-based
letrec-like implementation, nested ?:pletrec instances would
introduce distinct contour lines for scoping. But the control structure
of our pattern matcher does not make this easy.

The matcher procedures traverse the pattern and data in left-to-
right depth-first order, binding the first textual appearance of each
distinct pattern variable (like (? x)) to its corresponding datum and
then treating each subsequent textual appearance in the pattern as a
constraining instance. This is achieved by threading the dictionary
through the depth-first control path. Pay particular attention to the



appearance of new-dictionary in the body of match:list. This
control structure, in essence, decrees that the leftmost, deepest
instance of each unique pattern variable is a defining instance in an
implicit flat global namespace, with all subsequent downstream
appearances being constraining instances.

So let's not worry about that scoping complexity in this exercise.
Specifically, just as pattern variables all share a common global
namespace, so too can your pattern definitions.

Of course, if you are really ambitious, you can implement lexical
scoping by rewriting all the existing matcher interfaces to accept an
extra pattern-environment parameter. But that is a job for another
time and place (in exercise 4.9).



Exercise 4.8: Hoist by our own petard
On the surface it may appear that it would be easy to extend this
matcher system to allow vector patterns and vector data. But we made
a strong assumption in the design of this matcher—that it is a matcher
of list patterns on list data.

a. What would it take to liberate this code from that assumption so
that you could make a matcher that encompassed both kinds of
compound data? Or arbitrary sequences? What sorts of changes
are required? Do you need to change the interface to a match
procedure?

b. Make it so! (This is lots of work.)



Exercise 4.9: General pattern language
Even with the addition of ?:pletrec and ?:ref in exercise 4.7, the
pattern matcher we have is not a complete language, in that it does not
support namespace scoping and parametric patterns. For example, we
cannot write the following pattern, which is intended to match only
lists of symbols that are palindromes.

(?:pletrec ((palindrome

            (?:pnew (x)

              (?:choice ()

                        ((? x ,symbol?)

                         (?:ref palindrome)

                         (? x))))))

   (?:ref palindrome))

For this to work in any reasonable way, ?:pnew creates fresh
lexically scoped pattern variables that can be referred to only in the
body of the ?:pnew.

A fully worked-out pattern language is a wonderful subsystem to
have, but it is not easy to build.

To do: Flesh out this idea to produce a full pattern language. Not
for the faint of heart!



4.4 Unification match

Pattern matching is, as we have said, a kind of equality testing between
structured data items. It is a generalization of equality testing because
we allow some parts of the data to be unspecified, by allowing pattern
variables that match the unspecified parts of the data. But we require
that every occurrence of the same pattern variable must match
equivalent data.

So far our matchers have been one-sided: we match a pattern with
variables against data that contains no variables, producing a
dictionary—a map from each variable in the pattern to a matching
piece of the data. If we substitute the matching value for each variable
into the original pattern we make a substitution instance of the
pattern. The resulting instance is always equivalent to the original
data.

We are about to remove the limitation that the data has no
variables: we will allow variables on both sides of the match. This
powerful kind of match is called unification. The result of a successful
unification is also a dictionary, but the values for variables may
contain variables, and the dictionary may not give values for every
variable in the patterns. If we substitute the values associated with
variables in the dictionary for variables that appear in either of the two
given patterns, we obtain a substitution instance of both initial
patterns. This substitution instance, which may contain variables, is
called the unifier of the patterns. The unifier is the most general
common substitution instance of the two patterns: any other common
substitution instance of the two patterns is a substitution instance of
the unifier. The unifier is unique, up to renaming of the variables, so
unification is well defined.4

Unification was first described by J. A. Robinson in his famous
invention of the resolution procedure for theorem proving [104].5

For a simple example, suppose we have several sources of partial
information about Ben Franklin's dates of birth and death:

(define a



  ’(((? gn) franklin) (? bdate) ((? dmo) (? dday) 1790)))

(define b

  ’((ben franklin) ((? bmo) 6 1705) (apr 17 (? dyear))))

(define c

  ’((ben (? fn)) (jan (? bday) 1705) (apr 17 (? dyear))))

The unification of two expressions will give us a dictionary of the
values of the variables that are derived from the match. We can use
that dictionary to construct the unifier of the two patterns:

(unifier a b)

((ben franklin) ((? bmo) 6 1705) (apr 17 1790))

(unifier a c)

((ben franklin) (jan (? bday) 1705) (apr 17 1790))

(unifier b c)

((ben franklin) (jan 6 1705) (apr 17 (? dyear)))

Each of these results is more fully specified than the partial
information provided by any source. We can further combine all three
sources to get a full picture:

(unifier a (unifier b c))

((ben franklin) (jan 6 1705) (apr 17 1790))

(unifier b (unifier a c))

((ben franklin) (jan 6 1705) (apr 17 1790))

(unifier c (unifier a b))

((ben franklin) (jan 6 1705) (apr 17 1790))

Often there are constraints among the variables in an expression.
For example, there may be multiple instances of the same variable,
which must remain consistent, as in the following derivation:

(define addition-commutativity

  ’(= (+ (? u) (? v)) (+ (? v) (? u))))

(unifier ’(= (+ (cos (? a)) (exp (? b))) (? c))

         addition-commutativity)

(= (+ (cos (? a)) (exp (? b))) (+ (exp (? b)) (cos (? a))))



4.4.1 How unification works
We can think of unification as a kind of equation solving. If we think of
the patterns as structured partial information, unifying them is testing
the proposition that the two patterns are partial information about the
same thing. For the patterns to unify, the corresponding parts must
unify. So unification is setting up equations among the corresponding
parts and solving for the unknowns (the pieces of information left
unspecified in each pattern).

The process is analogous to the way we solve numerical equations.
The goal is to eliminate as many variables in the equations as we can.
The result is a list of substitutions of expressions for the eliminated
variables. No substitution expression may refer to any eliminated
variable. We scan the equations for one that can be solved for one of
the variables in it. Solving for a variable isolates it, finding an
equivalent expression that does not contain the variable. We eliminate
the variable by replacing all occurrences of it with its the newly
discovered value (the equivalent expression), both in the remaining
equations and in the values associated with previously eliminated
variables in the substitution list. We then add the new substitution to
the substitution list. We repeat until there are no more equations to be
solved or we encounter a contradiction. The result is either a
successful substitution list or a report of the contradiction.

In unification the “equations” are the matches of the corresponding
parts of the two input patterns, and the “substitution list” is the
dictionary. One way to implement unification is to walk the common
structure of the input patterns. As in one-sided matching, the patterns
are represented by list structure. If a variable is encountered on either
side of the match, it is bound, in the dictionary, to the data on the
other side.

If there are multiple occurrences of a variable in the original
patterns, each subsequent occurrence must match the value bound by
the first occurrence. This is ensured by the fact that every time a
variable is encountered, it is looked up in the dictionary, and if there is
a binding for the variable, its value is used instead of the variable.
Also, every time a new binding is made and entered into the
dictionary, the new binding is used to replace all instances of the
newly eliminated variable in the values for other variables in the



dictionary.
To obtain the unifier of two patterns we unify them to get the

dictionary of substitutions, if they can be unified. If not, unify returns
#f, indicating a failure. The dictionary is then used to instantiate one
of the patterns; it doesn't matter which is chosen. The procedure
match:dict-substitution replaces every instance of a variable in
the pattern expression pattern1 that has a binding in the dictionary
dict with its value in the dictionary.

(define (unifier pattern1 pattern2)

  (let ((dict (unify pattern1 pattern2)))

    (and dict

         ((match:dict-substitution dict) pattern1))))

The main interface to the unifier is unify, which returns the
dictionary result of a successful match, or #f if the match was
unsuccessful.

(define (unify pattern1 pattern2)

  (unify:internal pattern1 pattern2

                  (match:new-dict)

                  (lambda (dict) dict)))

The unify:internal entry point gives more control of the
matching process. It takes the two patterns to be unified, a dictionary
that may have some bindings specified, and a success continuation
(succeed) that will be called if the match succeeds. The success
continuation provided by unify, above, just returns the dictionary. In
section 4.4.4, when we add code to experiment with segment variables
in the patterns, we will be able to extract multiple matches by
returning #f from succeed, indicating that the result was not the one
wanted. The ability to backtrack into the matcher also simplifies other
interesting semantic extensions, such as incorporating algebraic
expressions and equation solving into the match process.6

In unify:internal the patterns to be unified, pattern1 and
pattern2 are wrapped in lists. The unifier program will compare these
lists term by term, building a dictionary that makes corresponding
terms equal. The match succeeds if both lists of terms are
simultaneously exhausted. At the top level, in unify:internal, the
term lists just contain the two given patterns, but the central



unification procedure, unify:dispatch, will recursively descend into
the pattern, comparing subpatterns of the patterns as lists of terms.7

(define (unify:internal pattern1 pattern2 dict succeed)

  ((unify:dispatch (list pattern1) (list pattern2))

  dict

  (lambda (dict fail rest1 rest2)

    (or (and (null? rest1) (null? rest2)

             (succeed dict))

        (fail)))

  (lambda () #f)))

The procedure unify:dispatch, which takes two input lists of
terms, is the core of the recursive descent matcher. The match process
depends on the contents of the term lists. For example, if both term
lists begin with a constant, as in (ben franklin) and (ben (? fn)),
the constants must be compared, and the match can proceed only if
the constants are equal. If one term list begins with a variable, the
other can begin with any term, and the variable must be bound to the
term it matches. (If both are variables, one of the variables will be
eliminated in favor of the other.) So, if one term list is ((? bmo) 6
1705) and the other is (jan (? bday) 1705), then the variable (?
bmo) must be bound to the value jan for the match to proceed. If both
term lists start with a list that is not a variable, the match must
recursively match the corresponding sublists before proceeding to
match the rest of the given term lists. For example, in unifying b and c
in the Ben Franklin example, after the first terms are matched the
dictionary contains a binding of fn to franklin and the remaining
termlists are (((? bmo) 6 1705) (apr 17 (? dyear))) and ((jan
(? bday) 1705) (apr 17 (? dyear))). Both of these term lists
begin with a list, so the matching must recurse to compare the sublists
((? bmo) 6 1705) and (jan (? bday) 1705).

The procedure unify-dispatcher returned by unify:dispatch
takes three arguments: a dictionary, a success continuation, and a
failure continuation. If both term lists are exhausted, the match
succeeds. If there are more terms to be matched, the generic
procedure unify:gdispatch calls an appropriate match procedure
that depends on the contents of the two term lists. If the match
succeeds, it means that the initial terms of the two term lists could be



unified relative to the given dictionary. So the success continuation is
called with the new dictionary dict*, a new failure continuation
fail*, and the unmatched tails, rest1 and rest2, of the input lists.
These tails are then matched by a recursive call to unify:dispatch.

(define (unify:dispatch terms1 terms2)

  (define (unify-dispatcher dict succeed fail)

    (if (and (null? terms1) (null? terms2))

        (succeed dict fail terms1 terms2)

        ((unify:gdispatch terms1 terms2)

         dict

         (lambda (dict* fail* rest1 rest2)

           ((unify:dispatch rest1 rest2) dict* succeed fail*))

         fail)))

  unify-dispatcher)

The generic procedure unify:gdispatch has handlers for the cases
described above: matching two constants, matching two term lists,
and matching a variable to something. (Because it is generic, it can be
extended for new kinds of matching.) The default handler, for cases
such as matching a constant to a term list, is unify:fail:

(define (unify:fail terms1 terms2)

  (define (unify-fail dict succeed fail)

    (fail))

  unify-fail)

(define unify:gdispatch

  (simple-generic-procedure ’unify 2 unify:fail))

In this unifier the term lists are matched term by term, so the job of
a handler is to match the first terms of the two term lists. Thus the
applicability of a handler depends only on the first term of each term
list. To simplify the applicability specification we introduce car-
satisfies, which takes a predicate and produces a new predicate
ensuring that there is a first term in the list and that term satisfies the
argument predicate.

(define (car-satisfies pred)

  (lambda (terms)

    (and (pair? terms)

         (pred (car terms)))))



Any term that is not a match variable or a list is a constant.
Constants match only when they are equal:

(define (unify:constant-terms terms1 terms2)

  (let ((first1 (car terms1)) (rest1 (cdr terms1))

        (first2 (car terms2)) (rest2 (cdr terms2)))

    (define (unify-constants dict succeed fail)

      (if (eqv? first1 first2)

          (succeed dict fail rest1 rest2)

          (fail)))

    unify-constants))

(define (constant-term? term)

  (and (not (match:var? term))

       (not (list? term))))

(define-generic-procedure-handler unify:gdispatch

  (match-args (car-satisfies constant-term?)

              (car-satisfies constant-term?))

  unify:constant-terms)

The handler unify:list-terms is where the recursive descent
actually happens. Because the first term of each term list is itself a list,
the matcher must recurse to match those sublists. If the match of the
sublists succeeds, the match must continue with the rest of the input
termlists. (Note that the recursive match will succeed only if all of the
terms of the two sublists match; so the unmatched sublist tails passed
to the success continuation will be empty and are ignored.)

(define (unify:list-terms terms1 terms2)

  (let ((first1 (car terms1)) (rest1 (cdr terms1))

        (first2 (car terms2)) (rest2 (cdr terms2)))

    (define (unify-lists dict succeed fail)

      ((unify:dispatch first1 first2)

       dict

       (lambda (dict* fail* null1 null2)

         (succeed dict* fail* rest1 rest2))

       fail))

    unify-lists))

(define (list-term? term)

  (and (not (match:var? term))

       (list? term)))

(define-generic-procedure-handler unify:gdispatch



  (match-args (car-satisfies list-term?)

              (car-satisfies list-term?))

  unify:list-terms)

So far our code implements recursive descent and the matching of
constants. Obvious contradictions like matching two different symbols
or a symbol to a list produce a failure. In order to solve interesting
equations we must be able to match terms with variables. When we
find variables, we may add new bindings to the dictionary. The part of
the equation solver that deals with variables is the procedure maybe-
substitute.

The procedure maybe-substitute gets one term list var-first
that starts with a variable. It matches that variable with the first term
of the second term list, terms.

If a variable is matched against itself we have a tautology, and the
match succeeds with an unchanged dictionary. If the variable already
has a value, we replace the variable with its value and match the
resulting list against the term list terms. Finally, if the variable does
not have a value, we can eliminate it using do-substitute, which is
responsible for adding a binding from var to term when possible.

(define (maybe-substitute var-first terms)

  (define (unify-substitute dict succeed fail)

    (let ((var (car var-first)) (rest1 (cdr var-first))

          (term (car terms)) (rest2 (cdr terms)))

      (cond ((and (match:element-var? term)

                  (match:vars-equal? var term))

             (succeed dict fail rest1 rest2))

            ((match:has-binding? var dict)

             ((unify:dispatch

                 (cons (match:get-value var dict) rest1)

                 terms)

              dict succeed fail))

            (else

             (let ((dict* (do-substitute var term dict)))

               (if dict*

                   (succeed dict* fail rest1 rest2)

                   (fail)))))))

  unify-substitute)

In do-substitute we first use the old dictionary to clean the
incoming term by replacing any previously eliminated variables with
their values. Then we check if there are any restrictions on what



objects var may match. Finally we check for any occurrences of var in
the cleaned term (term*). If the cleaned term contains a reference to
var, the match cannot proceed.8 If our match passes all these tests, we
make a new dictionary that includes the new binding of var to the
cleaned term. The binding values in the new dictionary must also be
cleaned of references to var.

(define (do-substitute var term dict)

  (let ((term* ((match:dict-substitution dict) term)))

    (and (match:satisfies-restriction? var term*)

         (or (and (match:var? term*)

                  (match:vars-equal? var term*))

         (not (match:occurs-in? var term*)))

     (match:extend-dict var term*

       (match:map-dict-values

        (match:single-substitution var term*)

        dict)))))

Now that we know how to handle variables we just have to install
this handler in our generic dispatcher procedure. The only subtlety
here is that the variable to be eliminated may appear in either term
list. We must guarantee that the term list containing the variable is the
first argument to maybe-substitute.

(define (element? term)

  (any-object? term))

(define-generic-procedure-handler unify:gdispatch

  (match-args (car-satisfies match:element-var?)

              (car-satisfies element?))

  (lambda (var-first terms)

    (maybe-substitute var-first terms)))

(define-generic-procedure-handler unify:gdispatch

  (match-args (car-satisfies element?)

              (car-satisfies match:element-var?))

  (lambda (terms var-first)

    (maybe-substitute var-first terms)))

At this point we have a complete, correct, and competent traditional
unifier.9 It is written with generic procedures, so it can easily be
extended to work with other kinds of data. And with only a small
amount of work we can add semantic attachments, such as the



commutativity of lists beginning with the symbols + and *. As we shall
see, we can also add support for new kinds of syntactic variables, such
as segment variables. But before we do that we will look at a real
application: type inference.



Exercise 4.10: Unifying vectors
This unifier can be extended to handle data and patterns that are made
of other data types, such as vectors. Make handlers for vectors without
transforming the vectors to lists (the easy way out!).



Exercise 4.11: Unifying strings
Extend the unifier to allow unification of strings. This could be fun,
but you need to invent a syntactic mechanism for representing string
variables inside a string. This is pretty delicate, because you may have
to represent a string variable with a string expression. This gets into
quotation problems—please try not to invent a baroque mechanism.
Also, make sure that you don't make assumptions that will prevent you
from introducing string segment variables later. (See exercise 4.21 on
page 209.)



Exercise 4.12: Variable restrictions
We added support for restrictions on variables as we did in the one-
sided matcher: we just put a clause for that into the main conditional
in the procedure do-substitute. But there are subtle problems.

What should happen if a restricted variable is matched against
another restricted variable?

When the variable is first bound to its target, after passing the
restriction, it is uniformly eliminated. But the restriction is then
lost, preventing it from killing an unsuitable later part of the
match.

Your task is to understand these problems and determine how to
ameliorate them. How important could this be for any applications
you might consider? Is there a solution that fits nicely into our
implementation strategy?



Exercise 4.13: Unifying with pattern combinators?
Unlike our earlier one-sided pattern matcher, our unification matcher
does not compile the patterns into match procedures that combine to
build a match procedure for the pattern. But a system of match
procedures is potentially more efficient, because it avoids the syntactic
analysis of the patterns while matching. Can the unification matcher
be broken up in a similar way? If not, why not? Is it a good idea to do
so? If not, why not? If so, do it! (This is hard!)

4.4.2 Application: Type inference
One classic application of unification matching is type inference: given
a program and some type information about parts of the program,
deduce type information about other parts of the program. For
example, if we know that < is a procedure that takes two numerical
arguments and produces a boolean value, then if we analyze the
expression (g (< x (f y))), we can deduce that f and g are unary
procedures; g accepts a boolean argument; f returns a numerical
value; and x has a numerical value. If this information is used to
deduce properties of the program that the expression is embedded in,
we can learn a great deal about the program. Here is an analysis of the
expression:

(pp (infer-program-types ’(g (< x (f y)))))

(t (? type:17)

   ((t (type:procedure ((boolean-type)) (? type:17)) g)

    (t (boolean-type)

       ((t (type:procedure ((numeric-type) (numeric-type))

                           (boolean-type))

           <)

        (t (numeric-type) x)

        (t (numeric-type)

           ((t (type:procedure ((? y:12)) (numeric-type)) f)

            (t (? y:12) y)))))))

This is the abstract tree of the given expression, annotated with
types. Each subexpression x has been expanded into a typed
expression of the form (t type x). For example, the reference to g has



the type:

(type:procedure ((boolean-type)) (? type:17))

As expected, g is a procedure that accepts a boolean argument, but we
have no information about its value. The unknown value type is
represented by the pattern variable (? type:17).

Let's consider a more substantial example:

(define foo

  (infer-program-types

   ’(define fact

      (lambda (n)

        (begin

          (define iter

            (lambda (product counter)

              (if (> counter n)

                  product

                  (iter (* product counter)

                        (+ counter 1)))))

          (iter 1 1))))))

The result in foo is rather verbose. So we look at it with a simplifier
that puts it into “human readable” form.

(pp (simplify-annotated-program foo))

(begin

  (define fact

    (lambda (n)

      (declare-type n (numeric-type))

      (define iter

        (lambda (product counter)

          (declare-type product (numeric-type))

          (declare-type counter (numeric-type))

          (if (> counter n)

              product

              (iter (* product counter)

                    (+ counter 1)))))

      (declare-type iter

        (type:procedure ((numeric-type) (numeric-type))

                        (numeric-type)))

      (iter 1 1)))

  (declare-type fact

    (type:procedure ((numeric-type)) (numeric-type))))

Here we see that the type inference program was able to determine the



complete type of the factorial program—that it is a procedure that
takes one numerical input and produces a numerical output. This is
reported in a declaration:

(declare-type fact

  (type:procedure ((numeric-type)) (numeric-type)))

The type of the internal definition iter has also been determined: it
takes two numerical arguments and produces a numerical result.

(declare-type iter

  (type:procedure ((numeric-type) (numeric-type))

                  (numeric-type)))

Also, the type of each internal variable has been determined, and an
appropriate declaration has been posted:

(declare-type n (numeric-type))

(declare-type product (numeric-type))

(declare-type counter (numeric-type))

4.4.3 How type inference works
The process of type inference has four phases.

1. The given program is annotated with type variables for all
subexpressions of the program.

2. Constraints on the type variables are formulated based on the
semantic structure of the program.

3. The constraints are unified to eliminate as many of the variables
as possible.

4. The annotated program is specialized using the dictionary
produced by unification of the constraints to make a new
annotated program whose type annotations incorporate the
constraints.

The plan is implemented in this procedure:

(define (infer-program-types expr)

  (let ((texpr (annotate-program expr)))

    (let ((constraints (program-constraints texpr)))

      (let ((dict (unify-constraints constraints)))



        (if dict

            ((match:dict-substitution dict) texpr)

            ’***type-error***)))))

This procedure complains if the program expression cannot be
consistently typed. However, it gives no explanation about why it
failed; this could be accomplished by passing information back in the
failure continuations.

Annotation
The annotate-program procedure is implemented in terms of a
generic procedure, annotate-expr, to allow easy extension for new
language features.

(define (annotate-program expr)

  (annotate-expr expr (top-level-env)))

(define annotate-expr

  (simple-generic-procedure ’annotate-expr 2 #f))

The annotate-expr procedure takes an environment for bindings of
the type variables. It is initialized with the top-level environment
created below.

There are simple handlers for annotating simple kinds of
expressions. If an explicit number appears as a subexpression it is
given a constant type, constructed by (numeric-type):

(define-generic-procedure-handler annotate-expr

  (match-args number? any-object?)

  (lambda (expr env)

    (make-texpr (numeric-type) expr)))

The procedure make-texpr constructs a typed expression from a type
and an expression. Its parts can be selected with texpr-type and
texpr-expr.

However, we may not a priori know a type for an identifier, which is
represented by a symbol. The procedure get-var-type tries to find
the identifier's type in the environment, and failing that, creates a
unique type variable for the type annotation of all occurrences of the
identifier in that lexical context:



(define-generic-procedure-handler annotate-expr

  (match-args symbol? any-object?)

  (lambda (expr env)

    (make-texpr (get-var-type expr env) expr)))

We may know types for some identifiers, such as primitive
procedures of the language. These are provided in the top-level
environment. The primitive procedures shown here have procedure
types with type constants (e.g., (numeric-type)) for their arguments
and values:

(define (top-level-env)

  (list (make-top-level-env-frame)))

(define (make-top-level-env-frame)

  (let ((binary-numerical

         (let ((v (numeric-type)))

           (procedure-type (list v v) v)))

        (binary-comparator

         (let ((v (numeric-type)))

           (procedure-type (list v v) (boolean-type)))))

    (list (cons ’+ binary-numerical)

          ...

          (cons ’= binary-comparator)

          (cons ’< binary-comparator)

          ...)))

For a conditional expression, a type variable is created for the value
of the conditional expression, and each subexpression is recursively
annotated:

(define-generic-procedure-handler annotate-expr

  (match-args if-expr? any-object?)

  (lambda (expr env)

    (make-texpr (type-variable)

        (make-if-expr

         (annotate-expr (if-predicate expr) env)

         (annotate-expr (if-consequent expr) env)

         (annotate-expr (if-alternative expr) env)))))

There are annotation handlers for every kind of expression. We will
not show all of them, but the annotation of a lambda expression is
interesting:

(define-generic-procedure-handler annotate-expr



  (match-args lambda-expr? any-object?)

  (lambda (expr env)

    (let ((env* (new-frame (lambda-bvl expr) env)))

      (make-texpr

       (procedure-type (map (lambda (name)

                              (get-var-type name env*))

                            (lambda-bvl expr))

                       (type-variable))

       (make-lambda-expr (lambda-bvl expr)

                         (annotate-expr) (lambda-body expr)

                                         env*))))))

Just as in an interpreter or compiler, the annotation of a lambda
expression makes a new environment frame to hold information about
the bound variables; in this case we create one type variable for each
bound variable. We create a procedure type for the value of the lambda
expression, with the type variables we just created for the bound
variables and a type variable for the value, and we recursively annotate
the body.

Constraints
The program-constraints procedure formulates constraints on the
type variables based on the semantic structure of the program. It is
also implemented using a generic procedure with handlers for each
expression type.

(define (program-constraints texpr)

  (program-constraints-1 (texpr-type texpr)

                         (texpr-expr texpr)))

(define program-constraints-1

  (simple-generic-procedure ’program-constraints-1 2 #f))

This generic procedure takes two arguments: the type of an expression
and the expression itself. It returns a list of constraints on the types
that it discovers in its study of the expression. It walks the expression
tree, discovering and formulating type constraints where they may be
found.

Here is the handler for conditionals:

(define-generic-procedure-handler program-constraints-1

  (match-args type-expression? if-expr?)



  (lambda (type expr)

    (append

      (list (constrain (boolean-type)

                       (texpr-type (if-predicate expr)))

            (constrain type

                       (texpr-type (if-consequent expr)))

            (constrain type

                       (texpr-type (if-alternative expr))))

      (program-constraints (if-predicate expr))

      (program-constraints (if-consequent expr))

      (program-constraints (if-alternative expr)))))

This handler formulates three type constraints that it adds to the
constraints it recursively formulates in the three subexpressions of the
conditional. The first constraint is that the value of the predicate
expression is a boolean. The second and third constraints are that the
type of the value of the conditional is the same as the types of the value
of the consequent expression and the value of the alternative
expression.

The constraints are represented as equations:

(define (constrain lhs rhs)

  ‘(= ,lhs ,rhs))

(The identifiers lhs and rhs are mnemonic for “left-hand side” and
“right-hand side” respectively.)

The type constraint for a lambda expression is that the type of the
value returned by the lambda expression's procedure is the same as
the type of the value of its body. This is combined with the constraints
formulated for the body.

(define-generic-procedure-handler program-constraints-1

  (match-args type-expression? lambda-expr?)

  (lambda (type expr)

    (cons (constrain (procedure-type-codomain type)

                     (texpr-type (lambda-body expr)))

          (program-constraints (lambda-body expr)))))

The constraints for a procedure call are that the operator's type is a
procedure type, the types of the operand expressions match the
argument types of the procedure, and the type of the value returned by
the procedure is the type of the call.



(define-generic-procedure-handler program-constraints-1

  (match-args type-expression? combination-expr?)

  (lambda (type expr)

    (cons (constrain (texpr-type (combination-operator expr))

                     (procedure-type

                      (map texpr-type

                           (combination-operands expr))

                      type))

          (append

            (program-constraints (combination-operator expr))

            (append-map program-constraints

                        (combination-operands expr))))))

Unification
Each constraint discovered is an equation of two type expressions. So
we now have a set of equations to solve. This is accomplished by
unifying the left-hand side (lhs) and right-hand side (rhs) of each
equation. All these unifications must be done in the same variable-
binding context so as to solve them simultaneously. Since unification
of two lists unifies corresponding elements of the lists, we can just
combine the constraints into one giant unification:

(define (unify-constraints constraints)

  (unify (map constraint-lhs constraints)

         (map constraint-rhs constraints)))

The dictionary returned by unify-constraints is then used by
infer-program-types (on page 196) to instantiate the typed
program.

Critique
Although this small type-inference system is a nice demonstration of
unification, it is not very good at type inference: it doesn't really
handle procedures very well. For example, consider the simple case:

(pp (infer-program-types

     ’(begin (define id (lambda (x) x))

             (id 2))))

This apparently works correctly, returning



(t (numeric-type)

   (begin

     (t (type:procedure ((numeric-type)) (numeric-type))

        (define id

          (t (type:procedure ((numeric-type)) (numeric-type))

             (lambda (x) (t (numeric-type) x)))))

     (t (numeric-type)

        ((t (type:procedure ((numeric-type)) (numeric-type))

            id)

         (t (numeric-type) 2)))))

But notice that the identity procedure has been typed as having a
numeric argument and a numeric value, because the procedure was
used with a numeric argument. However, the correct type for the
identity procedure should not require any specific kind of argument.
More generally, the type of a procedure should not depend on its use
in an example. This confusion causes a failure to type a perfectly
reasonable piece of code:

(infer-program-types

  ’(begin (define id (lambda (x) x))

          (id 2)

          (id #t)))

***type-error***



Exercise 4.14: Procedures
The specific problem shown in the critique above is not very hard to
fix, but the general case is complicated. How can we handle
procedures passed as arguments and returned as values? Remember
that there may be free variables in a procedure that are lexically bound
where the procedure was defined.

Work out a fix for this problem, and make it as general as you can.



Exercise 4.15: Parametric types
This exercise examines what it takes to extend this type-inference
system to work with parametric types. For example, the Scheme map
procedure operates on lists of objects of any type.

a. What must be done to extend the system to support parametric
types? Does this extension require us to modify the unifier? If so,
explain why it is necessary. If not, explain why it is not necessary.

b. Implement the changes required to allow parametric types to be
used.



Exercise 4.16: Union types
The type-inference system we have outlined here does not have any
support for union types. For example, the addition operator + is
defined for numeric arithmetic. But what if we want + to be both
addition of numbers and concatenation of strings?

a. What must be done to extend the system to support union
types? Does this extension require us to modify the unifier? If so,
explain why it is necessary. If not, explain why it is not necessary.

b. Implement the changes required to allow union types to be used.
Note: This is not easy.



Exercise 4.17: Side effects
The type-inference system we have outlined here is adequate for pure
functional programs. Can it be elegantly extended to work for
programs with assignment? If you think so, explain and demonstrate
your design. If you think not, explain your reasons.

This is not easy. It may be a nice term project to understand this
and make it work.



Exercise 4.18: Is this practical?
Is our implementation of type inference practical?

a. Estimate the orders of growth of time and space of the
annotation and constraints phases with the size of the program
being analyzed.

b. Estimate the order of growth of time and space of the giant
unification phase, using the algorithm shown. What about the best
known algorithms for unification? (This will take some library
research.)

c. Is there a way to break up the giant unification phase into parts
so that the whole has better asymptotic behavior?

4.4.4 Adding segment variables—an experiment!
Adding segment variables to the unifier is exciting: we are not sure
exactly what we will get.10 But our careful use of generic procedures
will ensure that no program that depends on the behavior of the
unifier without the addition of segment variables (such as the type
inference example) will produce wrong answers as a consequence of
this experiment. Indeed, the organization of the unifier in terms of
generic procedures makes such experiments relatively
unproblematic.11

The use of predicates for the dispatch controls the interaction
between element variables and segment variables. For example, a
segment variable may incorporate an element variable into a segment
it accumulates, but an element variable may not have a segment
variable as its value. Thus, we must change our definition of the
predicate element? (on page 192) to exclude segment variables:

(define (element? term)

  (not (match:segment-var? term)))

We need generic handlers for the segment variable cases. The
unify:gdispatch handler for term lists that start with a segment



variable is maybe-grab-segment, which is installed as follows. The list
known to contain the segment variable is always passed as the first
argument to maybe-grab-segment (as we did with maybe-

substitute).12

(define-generic-procedure-handler unify:gdispatch

  (match-args (car-satisfies match:segment-var?)

              (complement (car-satisfies match:segment-var?)))

  (lambda (var-first terms)

    (maybe-grab-segment var-first terms)))

(define-generic-procedure-handler unify:gdispatch

  (match-args (complement (car-satisfies match:segment-var?))

              (car-satisfies match:segment-var?))

  (lambda (terms var-first)

    (maybe-grab-segment var-first terms)))

In matching two termlists that each start with a segment variable,
there is a special case to be handled: if both lists start with the same
segment variable, we can dismiss the tautology without further work.
Otherwise it is possible that we will get a match starting with either
variable. But there are cases where a good match is obtained with one
variable but not the other, depending on the further occurrences of the
variables in the patterns. To make sure we don't miss a match starting
with one of the variables, we make the match symmetrical by trying
the other order if the first one fails.

(define (unify:segment-var-var var-first1 var-first2)

  (define (unify-seg-var-var dict succeed fail)

    (if (match:vars-equal? (car var-first1) (car var-first2))

        (succeed dict fail (cdr var-first1) (cdr var-first2))

        ((maybe-grab-segment var-first1 var-first2)

         dict

         succeed

         (lambda ()

           ((maybe-grab-segment var-first2 var-first1)

            dict

            succeed

            fail)))))

  unify-seg-var-var)

(define-generic-procedure-handler unify:gdispatch

  (match-args (car-satisfies match:segment-var?)

              (car-satisfies match:segment-var?))



  unify:segment-var-var)

The procedure maybe-grab-segment is analogous to the procedure
maybe-substitute (on page 191) used for element variables. The case
of matching a segment variable against itself was handled by
unify:segment-var-var; so maybe-grab-segment starts by checking
if the segment variable at the start of var-first has a value. If so, we
replace the variable with its value and match the resulting list against
the term list terms. Because the binding of a segment variable is the
list of elements that it gobbles, we use append to replace the segment
variable with its value. The more complex job of matching an unbound
segment variable is passed on to grab-segment.

(define (maybe-grab-segment var-first terms)

  (define (maybe-grab dict succeed fail)

    (let ((var (car var-first)))

      (if (match:has-binding? var dict)

          ((unify:dispatch

            (append (match:get-value var dict)

                    (cdr var-first))

            terms)

           dict succeed fail)

          ((grab-segment var-first terms)

           dict succeed fail))))

  maybe-grab)

The procedure grab-segment is where the segment matching and
backtracking actually happen. The term list is broken into two parts:
an initial segment and the rest of the terms (terms*). The initial
segment (initial) starts out empty and terms* is the whole term list.
The match tries to proceed with the segment variable bound to
initial. If that fails, the failure continuation tries to match with an
element moved from terms* to initial. This is repeated until either a
match succeeds or the match of the entire term list fails:

(define (grab-segment var-first terms)

  (define (grab dict succeed fail)

    (let ((var (car var-first)))

      (let slp ((initial ’()) (terms* terms))

        (define (continue)

          (if (null? terms*)

              (fail)

              (slp (append initial (list (car terms*)))



                   (cdr terms*))))

        (let ((dict* (do-substitute var initial dict)))

            (if dict*

                (succeed dict* continue (cdr var-first) terms*)

                (continue))))))

  grab)

This appears to be all that is required to make a unifier with an
experimental extension for segment variables. With segment variables
we must expect to get multiple matches. We can reject a match, forcing
the program to backtrack, to get an alternative. Note that each
dictionary entry is a list containing the name of the variable, the value,
and the type of the variable.

We can use the unifier as a one-sided matcher. For example, there
are exactly two ways to match the distributive law pattern to the given
algebraic expression, as we see:13

(let ((pattern ’(* (?? a) (+ (?? b)) (?? c)))

      (expression ’(* x y (+ z w) m (+ n o) p)))

  (unify:internal pattern expression (match:new-dict)

    (lambda (dict)

      (pp (match:bindings dict)) 

      #f)))

((c (m (+ n o) p) ??) (b (z w) ??) (a (x y) ??))

((c (p) ??) (b (n o) ??) (a (x y (+ z w) m) ??))

#f

Both of these dictionaries produce the same substitution instance:

(* x y (+ z w) m (+ n o) p)

But in an algebraic manipulator we really want both dictionaries,
because each of them represents a different application of the
distributive law.

Things get more complicated and much less clear when segment
variables match against lists containing segment variables:

(let ((p1 ’(a (?? x) (?? y) (?? x) c))

      (p2 ’(a b b b (?? w) b b b c)))

  (unify:internal p1 p2 (match:new-dict)

    (lambda (dict)

      (pp (match:bindings dict))

      #f)))



((y (b b b (?? w) b b b) ??) (x () ??))

((y (b b (?? w) b b) ??) (x (b) ??))

((y (b (?? w) b) ??) (x (b b) ??))

((w () ??) (y () ??) (x (b b b) ??))

((w () ??) (y () ??) (x (b b b) ??))

((y ((?? w)) ??) (x (b b b) ??))

((y () ??) (w () ??) (x (b b b) ??))

((w ((?? y)) ??) (x (b b b) ??))

((w () ??) (y () ??) (x (b b b) ??))

#f

Apparently, there are many ways to make this match. But many of the
dictionaries are really different ways of constructing the same
substitution instance. To see this clearly, we construct the substitution
instance in each case:

(let ((p1 ’(a (?? x) (?? y) (?? x) c))

      (p2 ’(a b b b (?? w) b b b c)))

  (unify:internal p1 p2 (match:new-dict)

    (lambda (dict)

      (and dict

           (let ((subst (match:dict-substitution dict)))

             (let ((p1* (subst p1)) (p2* (subst p2)))

               (if (not (equal? p1* p2*))

                   (error "Bad dictionary"))

               (pp p1*))))

      #f)))

(a b b b (?? w) b b b c)

(a b b b (?? w) b b b c)

(a b b b (?? w) b b b c) (a b b b b b b c)

(a b b b b b b c)

(a b b b (?? w) b b b c) (a b b b b b b c)

(a b b b (?? y) b b b c) (a b b b b b b c)

#f

So we see that each “solution” is a valid solution to the problem of
finding values for the variables that when substituted back into the
given patterns make the patterns the same. In this case five of the
solutions are equivalent. These five are the most general unifiers, and
they are unique up to renaming of the variables. The other four are not
as general as possible. But unification is supposed to produce the
unique most general common substitution instance of the two input
patterns, up to renaming of variables. So with segments, this very



useful pattern matcher is not really a unifier.
Actually, the problem is a bit worse. There are perfectly good

matches that are not found by this program. Here is an example:

;;; A missing match!

(unify:internal ’(((?? x) 3) ((?? x)))

                ’((4 (?? y)) (4 5))

                (match:new-dict)

                (lambda (dict)

                  (pp (match:bindings dict))

                  #f))

#f

But these expressions do match, with the following bindings:

((x (4 5) ??) (y (5 3) ??))

How sad! But there is a moral to this story. Using generic
procedures, we can make possibly problematic extensions to a correct
algorithm without undermining its correctness for uses of the
unextended algorithm. The extensions may be useful for some
purposes, even without satisfying the correctness requirements of the
unextended algorithm.



Exercise 4.19: Can we fix these problems?
We have a problem with unifying patterns containing segment
variables. We may miss some matches; we may generate multiple
copies of the same solution; and some of the solutions, although valid
solutions of the problem to make the input patterns equal, are not
maximally general. Let's think about fixing this.

a. Write a wrapper for unify:internal that collects all of the
solutions. This is not hard if you use assignments, but it might be
more fun to look for a functional solution—but don't try too hard!

b. Now that you have all of the solutions, it is easy to eliminate
duplicates. Create the result of substituting from each solution into
the inputs. You can check that the results of the two substitutions
are equal—this is a check that the algorithm for solving is correct.
Now save the pair of one substitution and one result for each
distinct result. Be careful: The name of a variable doesn't matter, so
two resulting dictionaries represent the same solution if you can
get one by uniformly renaming variables in the other.

c. If any result in the collection is a substitution instance of another
result, it is not a most general common specialization of the two
inputs.

Write the predicate substitution-instance? to filter those out. You
are now left with the collection of the most general common
specializations that this algorithm will generate. Return these.

d. Figure out a way to avoid missing matches like the “A missing
match!” shown above. Is there a simple extension of the code
shown that can handle this kind of match? Note: This is an
extremely difficult problem.



Exercise 4.20: More general matches
Beyond the nasty problems shown above, there is an interesting
subtlety that is not addressed by the unifier. Consider the following
problem:

(unifier ’((?? x) 3) ’(4 (?? y)))

(4 3)

Here we see a perfectly good match, but it is not the most general one
possible. The problem is that there can be any number of things
between the 4 and the 3. A better answer would be:

(4 (?? z) 3)

Figure out how to get this answer. This requires a significant
extension to the unifier.



Exercise 4.21: Strings with segments
If you did not do exercise 4.11 (page 193), do it now. But here we want
you to add string segment variables. This can be useful in matching
segments of DNA!



4.5 Pattern matching on graphs

The pattern matching we have developed so far is for matching list
structures. Such structures are excellent for representing expressions,
such as algebraic expressions or the abstract syntax trees of computer-
language expressions. However, pattern matching can be used to make
systems that operate on a much wider range of data. If the structure of
interest can be characterized by an accessibility relation, it may be
appropriate to describe the structure as a graph of nodes representing
“places” and edges representing “path elements” describing how the
places are interconnected. An electrical circuit is an example of such a
structure, where the circuit parts and circuit nodes are places and the
accessibility relation is just the description of the interconnect. A
board game like chess or checkers is another, where the board squares
may be represented by nodes in a graph and the adjacency of squares
may be represented by edges in the graph.

We will implement a graph as a collection of nodes and edges. Our
graphs are immutable in the sense that once a node or an edge is
added, it cannot be modified; the graph can be changed only by adding
more nodes and edges. This will have consequences that we will see in
section 4.5.4.

A node contains a collection of edges, and an edge is a combination
of a label and a value. The label of an edge is an object that is unique
under eqv?, usually a symbol or a number. The value of an edge is a
Scheme object, often another node.

This implementation will work with concrete graphs (where all of
the nodes and edges are available at the time we build the graph) and
lazy graphs (where the graph is extended, as necessary, at the time of
access). In the simpler world of linear sequences, a list is a concrete
graph and a stream is a lazy graph that is generated when referenced.

We will first look at a simple example to see how graphs work. We
will then use an extended example, a chess referee, to explore more
complex uses of graphs and pattern matching on graphs.



4.5.1 Lists as graphs
We start with the simple but familiar world of lists. The cons cells are
the nodes, which will be made with g:cons and whose car and cdr
will be implemented as edges labeled with car and cdr and accessed
by g:car and g:cdr:

(define (g:cons car cdr)

  (let ((pair (make-graph-node ’pair)))

    (pair ’connect! ’car car)

    (pair ’connect! ’cdr cdr)

    pair))

(define (g:car pair) (pair ’edge-value ’car))

(define (g:cdr pair) (pair ’edge-value ’cdr))

To represent lists as graphs we need a special end marker for lists:

(define nil (make-graph-node ’nil))

(define (g:null) nil)

(define (g:null? object) (eqv? object nil))

The conversion of a list to a list graph is:

(define (list->graph list)

  (if (pair? list)

      (g:cons (car list) (list->graph (cdr list)))

      (g:null)))

and a simple example works as expected:

(define g (list->graph ’(a b c)))

(and (eqv? ’a (g:car g))

     (eqv? ’b (g:car (g:cdr g)))

     (eqv? ’c (g:car (g:cdr (g:cdr g))))

     (g:null? (g:cdr (g:cdr (g:cdr g)))))

#t

We can modify the list-graph constructor to allow lazy graphs, with
nodes that are created as edges are traversed:

(define (list->lazy-graph list)

  (if (pair? list)



      (g:cons (delay (car list))

              (delay (list->lazy-graph (cdr list))))

      (g:null)))

Here we used the Scheme [109] delay to construct a promise that will
evaluate the delayed (postponed) expression when the promise is
forced. Streams [13] (lazy lists) are usually constructed using delay
and force.

4.5.2 Implementing graphs
We have to be able to make graph nodes and connect them to other
nodes by edges. We will represent a graph node as a bundle
procedure: a collection of delegate procedures that can be called by
name.14

(define (make-graph-node name)

  (let ((edges ’()))

    (define (get-name) name)

    (define (all-edges) (list-copy edges))

    (define (%find-edge label)

      (find (lambda (edge)

              (eqv? label (edge ’get-label)))

            edges))

    (define (has-edge? label)

      (and (%find-edge label) #t)) ; boolean value

    (define (get-edge label)

      (let ((edge (%find-edge label)))

        (if (not edge)

            (error "No edge with this label:" label))

        edge))

    (define (edge-value label)

      ((get-edge label) ’get-value))

    (define (connect! label value)

      (if (has-edge? label)

          (error "Two edges with same label:" label))

      (set! edges

            (cons (make-graph-edge label value) edges)))

    (define (maybe-connect! label value)

      (if (not (default-object? value))

          (connect! label value)))

    (bundle graph-node? get-name all-edges has-edge?

            get-edge edge-value connect! maybe-connect!)))

The argument to make-graph-node is the name of the new node; this



is shown when printing a node object. The first argument to the
bundle macro is a predicate that the generated bundle will satisfy. In
this case, it is defined as

(define graph-node? (make-bundle-predicate ’graph-node))

We will not show the definitions of other bundle predicates since they
are similar.

Edges are also represented as bundle procedures. An edge may have
a concrete value or the value may be a promise (constructed by delay)
to produce the value when asked. The latter provides for lazy graph
structures.

(define (make-graph-edge label value)

  (define (get-label) label)

  (define (get-value)

    (if (promise? value)

        (force value)

        value))

  (bundle graph-edge? get-label get-value))



Exercise 4.22: More lazy graphs
We have shown how to make concrete lists and lazy lists. How about
some more interesting structures?

Perhaps it would be nice to have a dynamically extensible tree. For
example, a game tree could be usefully built this way: we may want to
elaborate the tree both in breadth and depth as resources become
available. Make an example of such a tree that can be extended as
more plausible moves are considered at each level, and as more levels
are added for consideration.

4.5.3 Matching on graphs
We might want to search a graph for interesting features. One way to
do this is to try to match patterns to the graph. A pattern for a graph
could specify an alternating sequence of nodes and edges: a path. Such
a pattern can be matched by starting at a node and trying to follow the
path specified by the pattern.

Imagine, for example, that we have a chessboard and chess pieces.
The board squares are nodes of a graph. The nodes representing
adjacent squares are connected to a given node by edges. We can label
the edges, as seen by the player playing White, by compass directions:
north, south, east, west, northeast, southeast,

northwest, southwest. Going north is toward the Black side of the
board, and going south is toward the White side of the board.

Given such an arrangement, we can specify a move where a knight
may move north-north-east as:

(define basic-knight-move

  ‘((? source-node ,(occupied-by ’knight))

    north (?)

    north (?)

    east (? target-node ,maybe-opponent)))

This pattern shares several characteristics with those we've looked at
in previous sections: element variables are introduced by the ?
character; they can have names (e.g., source-node); and they can
have restrictions (e.g., (occupied-by ’knight)). We introduce the



syntax (?) to indicate an anonymous element variable.
The pattern match starts with source-node, traverses two edges

labeled north—with nodes that we don't care about—and finally
travels east to reach target-node. We call this kind of pattern a path
pattern, or in the context of chess, a move pattern.

Of course, this is only one possible knight move. But we can
generate all possible knight moves by symmetries: we can reflect the
knight move east-west, we can rotate it clockwise by 90 degrees, and
we can rotate it by 180 degrees:

(define all-knight-moves

  (symmetrize-move basic-knight-move

                   reflect-ew rotate-90 rotate-180))

The symmetrize-move procedure applies all possible combinations of
these three symmetries to produce eight moves. The order in which
the symmetry transformations are applied doesn't matter for the
transformations we use.

(define (symmetrize-move move . transformations)

  (let loop ((xforms transformations) (moves (list move)))

    (if (null? xforms)

        moves

        (loop (cdr xforms)

              (append moves

                      (map (rewrite-path-edges (car xforms))

                           moves))))))

where rewrite-path-edges applies its argument to each edge label in
a move, producing a new move with substituted edge labels.

One example of such a symmetry transformation is

(define (reflect-ew label)

  (case label

    ((east) ’west)

    ((northeast) ’northwest)

    ((northwest) ’northeast)

    ((southeast) 'southwest)

    ((southwest) 'southeast)

    ((west) ’east)

    (else label)))

and the others are similar remappings of the compass directions.



The resulting list of all knight moves is

((source north (?) north (?) east target ) (source north (?) 

north (?) west target)

 (source east (?) east (?) south target)

 (source east (?) east (?) north target)

 (source south (?) south (?) west target)

 (source south (?) south (?) east target)

 (source west (?) west (?) north target)

 (source west (?) west (?) south target))

where we have simplified the printing by replacing the restricted
source and target node variables with source and target.

Knight moves are special in chess, in that a knight can move over
squares occupied by either a friend or an opponent to get to the target
square. Rooks, bishops, and queens may not pass through an occupied
square, but they may pass through many unoccupied squares on their
way to a target square. We need a way to specify such a repeated
traversal. We use (* ...) to specify a repeated traversal:

(define basic-queen-move

  ‘((? source-node ,(occupied-by ’queen))

    (* north (?* ,unoccupied))

    north (? target-node ,maybe-opponent)))

The queen may move north through any number of unoccupied
squares to the target square. The notation (?* ...) is a new kind of
pattern variable that can be used only inside a (* ...) pattern. Like a
simple pattern variable, it matches one element, but instead of saving
just a single matched value, it collects a list of all elements matched in
the repeat. All of the queen's possible moves are then:

(define all-queen-moves

  (symmetrize-move basic-queen-move

                   rotate-45 rotate-90 rotate-180))

Pawns have more complicated rules. A pawn is (almost) the only
piece whose possible moves depend on its position or the position of a
neighboring opponent.15 A pawn may go north one or two steps from
its initial position, but it may go only one step north if not in its initial
position. A pawn may take one step northeast or northwest if and only
if that move takes an opponent piece. Finally, a pawn in the



penultimate row may move into the last row and be promoted into any
piece, usually a queen.16



Exercise 4.23: Filling out chess moves
We have shown how to make patterns for knight moves and queen
moves, but we have not made patterns for moves for all chess pieces.

a. Rook moves and bishop moves are similar to queen moves, but
more restricted: a rook cannot move diagonally, and a bishop can
move only diagonally. Make patterns for all bishop moves and all
simple rook moves.

b. Pawn moves are much more complicated. Make a set of patterns
for all possible pawn moves (except en passant captures).

c. Make a set of patterns for the king's very limited ways to move.
Don't worry about castling or the rule that a king cannot be moved
into check.

d. Castling is the final special case. It involves both the king and a
rook. Make a set of castling patterns. (See footnote 15.)

4.5.4 Chessboards and alternate graph views
The chessboard, as a graph, incorporates an exciting idea. We want the
same patterns to work for both players. But the edges describing
directions are different: north for White is south for Black and east
for White is west for Black! This makes little difference for the major
pieces (the rooks, knights, bishops, kings, queens) with symmetrical
move patterns, but White pawns can move only north and Black
pawns can move only south. In any case, it would be pleasant to make
the move descriptions the same for both players.

We want the two players to have different views of the board graph:
we want the meanings of the edge labels to be relative to the player. If
the player playing White sees a north edge from (the node
representing) square A to square B we want the player playing Black to
see a north edge from square B to square A.

To make this work we introduce graph views. A graph view is a
reversible mapping from one edge label to another. When a graph view
is applied to a node, it returns a copy of that node in which the edges



are renamed.
In the case of chess the relevant view is with the board rotated 180

degrees:

(define rotate-180-view

  (make-graph-view ’inverse rotate-180 rotate-180))

where make-graph-view makes a graph view. The procedure graph-
node-view applies a view to a node:

(graph-node-view node view )

White will see a node directly and Black will see the same node
projected through the rotate-180-view. Given this map, all
operations look the same to both White and Black.

Using a graph view takes care of relative addressing, where we are
looking at neighbors of a given node. But we also need to do absolute
addressing, where the node to find is specified by a row and column.
Each color wants to see similar addressing, where the home row is 0,
and the opponent's home row is 7; likewise each color sees the
leftmost column as 0 and the rightmost as 7.17 White's addresses are
the default, and Black's are inverted with the procedure invert-
address.

Let's make a board. The following code is specific to chess, since
we're not focusing on making an abstract domain. We make an 8 × 8
array of nodes representing squares, each with an address. We iterate
through all possible square addresses, connecting each node to each of
its neighbors by an edge with the appropriate label. Then we populate
the sides with pieces.

(define chess-board-size 8)

(define chess-board-indices (iota chess-board-size))

(define chess-board-last-index (last chess-board-indices))

(define (make-chess-board)

  (let ((board (make-chess-board-internal)))

    (for-each (lambda (address)

                (connect-up-square address board))

              board-addresses)

    (populate-sides board)

    board))



The possible addresses for chess-board squares are all pairs of integers
from 0 to 7:

(define board-addresses

  (append-map (lambda (y)

                (map (lambda (x)

                       (make-address x y))

                     chess-board-indices))

              chess-board-indices))

The procedure make-chess-board-internal makes the array of
nodes for squares as a list of rows, each of which is a list of columns for
that row. It returns a bundle procedure with a handful of delegates to
manipulate the board.

(define (make-chess-board-internal)

  (let ((nodes

         (map (lambda (x)

                (map (lambda (y)

                       (make-graph-node (string x "," y)))

                     chess-board-indices))

              chess-board-indices)))

    (let loop ((turn 0))

      See below for the delegate definitions.

      (bundle #f node-at piece-at piece-in address-of

              set-piece-at color next-turn))))

The turn variable is the current turn, starting with zero. Even turns
are White, and odd turns are Black, as shown by the delegate
procedure color:

(define (color) (if (white-move?) ’white ’black))

(define (white-move?) (even? turn))

The delegate procedure node-at gets the node at a given address. If
this is a Black turn, it translates the address and applies the node view.

(define (node-at address)

  (define (get-node address)

    (list-ref (list-ref nodes (address-x address))

              (address-y address)))

  (if (white-move?)

      (get-node address)

      (graph-node-view (get-node (invert-address address))

                       rotate-180-view)))



The inverse of node-at is the delegate procedure address-of. Each
node has an edge, labeled with address, with its address as the value.
As with node-at, if this is a Black move the returned address must be
translated.

(define (address-of node)

  (let ((address (node ’edge-value ’address)))

    (if (white-move?)

        address

        (invert-address address))))

The delegate procedure next-turn advances the board after a move
is made:

(define (next-turn) (loop (+ turn 1)))

Connecting the squares to their neighbors does address arithmetic
to handle (literal) edge cases, creating a labeled edge between each
square and each of its neighbors. It also creates the address edge for
each node.

(define (connect-up-square address board)

  (let ((node (board ’node-at address)))

    (node ’connect! ’address address)

    (for-each-direction

     (lambda (label x-delta y-delta)

       (let ((x+ (+ (address-x address) x-delta))

             (y+ (+ (address-y address) y-delta)))

         (if (and (<= 0 x+ chess-board-last-index)

                  (<= 0 y+ chess-board-last-index))

             (node ’connect! label

                   (board ’node-at

                          (make-address x+ y+)))))))))

(define (for-each-direction procedure)

  (procedure ’north 0 1)

  (procedure ’northeast 1 1)

  (procedure ’east 1 0)

  (procedure 'southeast 1 -1)

  (procedure 'south 0 -1)

  (procedure 'southwest -1 -1)

  (procedure ’west -1 0)

  (procedure ’northwest -1 1))

An address is represented as a list of column and row number:



(define (make-address x y) (list x y))

(define (address-x address) (car address))

(define (address-y address) (cadr address))

(define (address= a b)

  (and (= (address-x a) (address-x b))

       (= (address-y a) (address-y b))))

(define (invert-address address)

  (make-address (- chess-board-last-index

                   (address-x address))

                (- chess-board-last-index

                   (address-y address))))

A piece is represented by data incorporating its piece type and its
color. Our convention is that at the nth turn, each piece on the board
will be connected to the node representing the square it occupies by an
edge from that node with the label n. This is a consequence of graph
immutability; otherwise we could just use a side effect to modify the
edge. To populate the board, we connect each piece to the node for its
initial square with an edge labeled 0.

(define (populate-sides board)

  (define (populate-side color home-row pawn-row)

    (define (do-column col type)

      (add-piece col home-row type)

      (add-piece col pawn-row ’pawn))

    (define (add-piece col row type)

      ((board ’node-at (make-address col row))

        ’connect! 0 (make-piece type color)))

    (do-column 0 ’rook)

    (do-column 1 ’knight)

    (do-column 2 ’bishop)

    (do-column 3 ’queen)

    (do-column 4 ’king)

    (do-column 5 ’bishop)

    (do-column 6 ’knight)

    (do-column 7 ’rook))

  (populate-side ’white 0 1)

  (populate-side ’black 7 6))



We can now start a game:

(define the-board)

(define (start-chess-game)

  (set! the-board (make-chess-board))

  (print-chess-board the-board))

And we get this nice chessboard image:

4.5.5 Chess moves
Now that we have a chessboard, populated with pieces, we need a way
to move those pieces around. If a piece is in a particular square at a
particular turn, the node representing that square has an edge, with
the turn as its label, whose value is the piece. The following delegate
procedures in make-chess-board-internal on page 218 are relevant
here:

(define (piece-at address)

  (piece-in (node-at address)))

(define (piece-in node)



  (and (node ’has-edge? turn)

       (node ’edge-value turn)))

(define (set-piece-at address piece)

  ((node-at address) ’connect! (+ turn 1) piece))

We use piece-at to obtain a piece that we expect to move, given its
address. Of course, it is always a good idea to check for obvious errors.

(define (get-piece-to-move board from)

  (let ((my-piece (board ’piece-at from)))

    (if (not my-piece)

        (error "No piece in this square:" from))

    (if (not (eq? (board ’color) (piece-color my-piece)))

        (error "Can move only one's own pieces:"

               my-piece from))

    my-piece))

To actually make a move we pick the piece up and set it down in the
target square. However, this move is allowed only if the target square
is empty or if it is occupied by an opponent piece to be captured.

(define (simple-move board from to)

  (let ((my-piece (get-piece-to-move board from)))

    (let ((captured (board ’piece-at to)))

      (if (not (no-piece-or-opponent? captured my-piece))

          (error "Can't capture piece of same color:"

                 captured)))

    ;; The move looks good; make it so:

    (board 'set-piece-at to my-piece)

    ;; Now update all the unaffected pieces to

    ;; the next state of the board:

    (for-each (lambda (address)

                (if (not (or (address= from address)

                             (address= to address)))

                    (let ((p (board ’piece-at address)))

                      (if p

                          (board ’set-piece-at address p)))))

              board-addresses)

    (board ’next-turn)))

Notice that we didn't put in a check that the piece we want to move is
able to make that move. Our only descriptions of the legal moves
available to each kind of piece are in the graph patterns that we built
in section 4.5.3. In exercise 4.24 on page 225 we will fix this problem.



But first, let's use the matcher to determine whether a move
described by such a path pattern is a capture:

(define (capture? board from path)

  (let* ((my-piece (get-piece-to-move board from))

         (dict

          (graph-match path

                       (match:extend-dict chess-board:var ;**

                                          board

                                          (match:new-dict))

                       (board ’node-at from))))

    (and dict

         (let* ((target (match:get-value 'target-node dict))

                (captured (board ’piece-in target)))

           (and captured

                ‘(capture ,my-piece

                          ,captured

                          ,(board ’address-of target)))))))

The line marked by ;** adds a special binding in the initial dictionary,
which is used by some pattern restrictions that need to interrogate the
board.

For convenience, chess-move updates the board with a move, then
prints the board for the player who will move next.

(define (chess-move from to)

  (set! the-board (simple-move the-board from to))

  (print-chess-board the-board))

To demonstrate this code we can make an interesting position:

(define (giuoco-piano-opening)

  (start-chess-game)

  (chess-move ’(4 1) ’(4 3))            ;W: P-K4

  (chess-move ’(3 1) ’(3 3))            ;B: P-K4

  (chess-move ’(6 0) ’(5 2))            ;W: N-KB3

  (chess-move ’(6 0) ’(5 2))            ;B: N-QB3

  (chess-move ’(5 0) ’(2 3))            ;W: B-QB4

  (chess-move ’(2 0) ’(5 3)))           ;B: B-QB4

(giuoco-piano-opening)

After lots of printout, we obtain the following board position:



At this point the White Knight at King Bishop 3 is attacking the
Black Pawn at King 5. It is not a good idea to take that piece because it
is defended by the Black Knight at Queen-Bishop 6, and one should
not exchange a knight for a pawn. However, we can use a graph
pattern from the knight moves to check that this is a possible capture:

(capture? the-board

          (make-address 5 2)

          ‘((? source-node ,(occupied-by ’knight))

            north (?) north (?)

            west (? target-node ,maybe-opponent)))

(capture (knight white) (pawn black) (4 4))

Indeed, it is the only possible capture for this knight:

(filter-map (lambda (path)

              (capture? the-board

                        (make-address 5 2)

                        path))

            all-knight-moves)

((capture (knight white) (pawn black) (4 4)))



Exercise 4.24: Legal chess moves
In exercise 4.23 on page 216 we made a library of patterns for all legal
chess moves. Modify the simple-move program (page 222) to check
that the piece being moved is allowed to move in the way requested.

4.5.6 Implementing graph matching
The entry point for using a graph pattern is:

(define (graph-match path dict object)

  ((gmatch:compile-path path) object dict

   (lambda (object* dict*)

     dict*)))

We compile the path pattern into a match procedure that takes the
graph object (a node) to start from, an initial dictionary, and a success
continuation. If the pattern successfully matches a sequence of edges
starting with that node, it calls the success continuation, which takes
the node (object*) at the end of the matched path and a dictionary of
bindings accumulated in the match, as described in section 4.3.18 If
the pattern fails to match the given object the match procedure returns
#f.

The patterns that we are using for matching against graphs are
expressions of a small language that we want to compile into match
procedures. The syntax of graph-pattern expressions can be described
in BNF. Here a postfix * indicates 0 or more occurrences, postfix +
indicates 1 or more, and postfix ? indicates 0 or 1 occurrence. An infix
| indicates alternatives. Items surrounded in " are literal strings. For
example, a pattern variable to match a single element starts with (?,
has an optional name and optional predicate, and ends with ).

<edge> = <edge-label> <target>

<edge-label> = <symbol>

<target> = <node-var> | <object-var> | <constant>

<node-var> = <single-var>

<object-var> = <single-var> | <sequence-var>

<single-var> = "(?" <var-name>? <unary-predicate>? ")"

<sequence-var> = "(?*" <var-name>? <unary-predicate>? ")"



<var-name> = <symbol>

<path> = <node-var> <path-elements>

<path-elements> = <path-element>*

<path-element> =

    <edge>

  | "(*" <path-elements> ")" ; repeat any number of times

  | "(+" <path-elements> ")"  ; repeat at least once

  | "(opt" <path-elements> ")"  ; one or zero instances

  | "(or" <ppath-elements>+ ")"

  | "(and" <ppath-elements>+ ")"

<ppath-elements> = "(" <path-elements> ")"

In our graph-matching language every path in a graph starts with a
node variable. A node variable is a single-element variable, which
satisfies the predicate match:element-var?. We compile a path as
follows:

(define (gmatch:compile-path path)

  (if (and (pair? path) (match:element-var? (car path)))

      (gmatch:finish-compile-path (cdr path)

        (gmatch:compile-var (car path)))

      (error "Ill-formed path:" path)))

Here we check that the first element of path is an element variable; if
so, we compile it into a variable matcher. The remainder of the path, if
any, is compiled by finish-compile-path:19

(define (gmatch:finish-compile-path rest-elts matcher)

  (if (null? rest-elts)

      matcher

      (gmatch:seq2 matcher

                   (gmatch:compile-path-elts rest-elts))))

where seq2 produces a match procedure that sequentially matches its
match-procedure arguments:

(define (gmatch:seq2 match-first match-rest)

  (define (match-seq object dict succeed)

    (match-first object dict

                 (lambda (object* dict*)

                   (match-rest object* dict* succeed))))

  match-seq)



The variable matcher match-first, produced by compile-var, will
match the initial node of the path, and the resulting dictionary dict*
is then used by the result of compile-path-elts (match-rest) to
match the remainder of the path, starting with the edge object*.

There are only a few cases for compiling path-element patterns.
Either the path starts with an edge label and a target node, or it starts
with a special match form (*, +, opt, or, and):

(define (gmatch:compile-path-elts elts)

  (let ((elt (car elts))

        (rest (cdr elts)))

    (cond ((and (symbol? elt) (pair? rest))

           (gmatch:finish-compile-path (cdr rest)

             (gmatch:compile-edge elt (car rest))))

          ((pair? elt)

           (gmatch:finish-compile-path rest

             (gmatch:compile-path-elt elt)))

          (else

           (error "Ill-formed path elements:" elts)))))

An edge may be labeled by any symbol that is not one of the special
symbols (*, +, opt, or, and) used by graph-matcher patterns. The
matcher for a simple labeled edge is then compiled by:

(define (gmatch:compile-edge label target)

  (let ((match-target (gmatch:compile-target target)))

    (define (match-edge object dict succeed)

      (and (graph-node? object)

           (object ’has-edge? label)

           (match-target (object ’edge-value label)

                         dict succeed)))

    match-edge))

The edge matcher, match-edge, checks that the object is a graph node,
that there is an edge with the given label emanating from that object,
and that the target of the edge (the edge-value) will match (using
match-target) the pattern for the target in the graph-match pattern.
The match procedure match-target used in match-edge is made by
the compiler compile-target.

There are only two possibilities when compiling a target: a variable
or a constant.

(define (gmatch:compile-target elt)



  (if (match:var? elt)

      (gmatch:compile-var elt)

      (let ()

        (define (match-constant object dict succeed)

          (and (eqv? elt object)

               (succeed object dict)))

        match-constant)))

The special match forms are handled by compile-path-elt:

(define (gmatch:compile-path-elt elt)

  (let ((keyword (car elt))

        (args (cdr elt)))

    (case keyword

      ((*) (gmatch:compile-* args))

      ((+) (gmatch:compile-+ args))

      ((opt) (gmatch:compile-opt args))

      ((or) (gmatch:compile-or args))

      ((and) (gmatch:compile-and args))

      (else (error "Ill-formed path element:" elt)))))

Compiling a pattern with optional path elements works as follows:
There is a recursive call to compile-path-elts with the path element
patterns for the optional sequence of path elements, to obtain
matcher, the matcher for the elements that are optionally present in
the path. When match-opt is applied to a graph node object, the
matcher for those path elements is applied; but if it fails, returning #f,
the match succeeds with the original object and the original dictionary.

(define (gmatch:compile-opt elts)

  (let ((matcher (gmatch:compile-path-elts elts)))

    (define (match-opt object dict succeed)

      (or (matcher object dict succeed)

          (succeed object dict)))

    match-opt))

A pattern with repeated path elements, for example the pattern (*
north (?* ,unoccupied)) in basic-queen-moves on page 215, is
compiled like this:

(define (gmatch:compile-* elts)

  (gmatch:* (gmatch:compile-path-elts elts)))

As for a pattern requiring an optional sequence of path elements, the
compiler is called recursively to obtain a matcher for the potentially



repeated sequence, which is then passed to gmatch:*:

(define (gmatch:* matcher)

  (define (match-* object dict succeed)

    (or (matcher object dict

                 (lambda (object* dict*)

                   (match-* object* dict* succeed)))

        (succeed object dict)))

  match-*)

The graph-pattern matcher match-* tries to use the matcher passed to
it on the graph node object supplied. If it succeeds, match-* calls itself
recursively to try the part of the graph where the last match left off.
Eventually it will fail to progress, succeeding with the graph object that
matcher failed on.

Compiling patterns requiring at least one, but possibly many,
repetitions of a sequence of path elements, indicated with +, is similar
to *. It uses gmatch:* as above, but requires at least one matching
element first:

(define (gmatch:compile-+ elts)

  (let ((matcher (gmatch:compile-path-elts elts)))

    (gmatch:seq2 matcher (gmatch:* matcher))))

The remaining special path patterns are and and or, each of which
contains a number of subpath patterns. An and element must match
all of the subpath patterns starting at the current node. An or element
must match at least one of the subpath patterns starting at the current
node.

(define (gmatch:compile-and elt-lists)

  (gmatch:and (map gmatch:compile-path-elts elt-lists)))

(define (gmatch:compile-or elt-lists)

  (gmatch:or (map gmatch:compile-path-elts elt-lists)))

The procedures and and or are where the real work happens:

(define (gmatch:and matchers)

  (lambda (object dict succeed)

    (if (null? matchers)

        (succeed object dict)

        (let loop ((matchers matchers) (dict dict))

          ((car matchers) object dict



           (if (null? (cdr matchers))

               succeed

               (lambda (object* dict*)

                 (loop (cdr matchers) dict*))))))))

(define (gmatch:or matchers)

  (lambda (object dict succeed)

    (let loop ((matchers matchers))

      (if (pair? matchers)

          (or ((car matchers) object dict succeed)

              (loop (cdr matchers)))

          #f))))

The procedure compile-var compiles a pattern variable. It is called
from compile-path and compile-target, and has four mutually
exclusive cases to handle variables with or without the optional name
and predicate:

(define (gmatch:compile-var var)

  (cond ((match-list? var gmatch:var-type?)

         (gmatch:var-matcher (car var) #f #f))

        ((match-list? var gmatch:var-type? symbol?)

         (gmatch:var-matcher (car var) (cadr var) #f))

        ((match-list? var gmatch:var-type? symbol? procedure?)

         (gmatch:var-matcher (car var) (cadr var) (caddr var)))

        ((match-list? var gmatch:var-type? procedure?)

         (gmatch:var-matcher (car var) #f (cadr var)))

        (else

         (error "Ill-formed variable:" var))))

The procedure var-type? matches the type symbol of a pattern
variable: ? or ?*. To recognize the four cases of variables, compile-
var uses a utility procedure match-list?, which is true if its first
argument is a list and each element of the list satisfies the
corresponding predicate argument.

(define (match-list? datum . preds)

  (let loop ((preds preds) (datum datum))

    (if (pair? preds)

        (and (pair? datum)

             ((car preds) (car datum))

             (loop (cdr preds) (cdr datum)))

        (null? datum))))

The procedure var-matcher is the matcher for variables, now that



we have decoded their syntax.

(define (gmatch:var-matcher var-type var-name restriction)

  (define (match-var object dict succeed)

    (and (or (not restriction)

             (restriction object dict))

         (if var-name

             (let ((dict*

                    (gmatch:bind var-type var-name object

                                 dict)))

               (and dict*

                    (succeed object dict*)))

             (succeed object dict))))

  match-var)

Here bind adds a binding for var-name with value object, returning a
new dictionary. If the dictionary already has such a binding, and its
value is different from object, bind returns #f to indicate a match
failure.

And with this we have finished the graph matcher.



Exercise 4.25: Graph matching
The graph matcher described here is very useful, but there are
problems for which it isn't well suited. What is an interesting problem
that requires extension(s) to the matcher? Find such a problem, define
and implement the extension(s), and demonstrate its use on some
examples.



4.6 Summary

Patterns are fun, but they are also a very useful way to organize parts
of a system for additivity. In this chapter we have seen how to build a
term-rewriting system. A rule-based term-rewriting system makes it
easy to write programs that do successive replacements of parts of an
expression with “equivalent” parts, terminating when no more rules
are applicable. Such systems are important components of larger
systems that do symbolic manipulation. Algebraic expression
simplification is one application, but compilers do huge amounts of
this kind of manipulation, to compute optimizations and sometimes to
generate code.

We also saw a flexible way to construct a pattern matcher, by
“compiling” a pattern into a combination of simple matchers that all
have the same interface structure. This makes it easy to add new
features and to make such a system very efficient. When we add
segment variables, which match an unspecified number of elements,
to such a matcher we find that we have to implement a backtracking
system, because there may be multiple possible matches to any
particular data if the pattern has more than one segment variable. This
complicates matters significantly. Besides the intrinsic complexity of
backtracking, the backtracking in the pattern matcher must be
interfaced to the backtracking system in the rule executive that uses
the patterns. We will examine more general ways of dealing with
backtracking in section 5.4. We will investigate even more powerful
backtracking strategies in section 7.5.2.

If we model partially specified data as patterns with holes
(represented by pattern variables), then we find that we need to match
patterns against each other to collect the constraints on the data so
that we can sharpen the specification. We explored unification: the
process of merging partial information structures of this kind. This is
essentially a way of setting up and solving symbolic equations for the
missing parts of the data. Unification is very powerful, and we showed
how to make a simple type-inference engine using unification in this
way.



We found that the ideas of pattern matching can be extended to
operate on general graphs rather than just hierarchical expressions.
This made it easy to work with such complex graphs as chess boards,
where we used patterns to specify legal chess moves. Patterns and
pattern matching can be a way to express computational thought, and
on some problems can be more revealing than other programming
methods. But be careful: pattern matching is not the answer to all of
the world's problems, so let's not become addicted to it.

 

1 Of course, a very clever matcher could deduce that y=0, under the
assumption that we are dealing with numbers.

2 See section 5.4.2 on page 273 for more examples and explanation of
this success/failure pattern.

3 This strategy for building pattern matchers was first described by
Carl Hewitt in his PhD thesis [56].

4 The unifier is unique for patterns with only element variables. This is
a theorem; we will not prove it here. In section 4.4.4 we will extend
our unifier to include segment variables. However, when the
patterns have segment variables, unification will generally yield
multiple matches.

5 For an extensive survey of unification see [6].

6 In the guts of this unifier it is convenient for a failure to make an
explicit call to a failure continuation. But in unify:internal we
transition to a different convention for indicating a failure:
returning #f from a success continuation. This is to make the
convention for use of the unifier the same as the convention for use
of the matcher of section 4.3.This is an interesting transition. In the
rule system in section 4.2.2 we used explicit success and failure
continuations, so to use the matcher in the rule system we had to
make the reverse transition: the matcher used the #f convention, so
make-rule (on page 166) had to implement the transition.The
choice of convention for implementing failure in a backtracking



system is usually a matter of style, but the use of an explicit failure
continuation is often easier to extend. Luckily, it is easy to interface
these disparate ways of implementing backtracking.

7 As in the pattern matching system described in section 4.3, the
unification matcher is organized around lists of terms to allow later
extension to segment variables.

8 In the unification literature this is called the “occurs check.” The
occurs check is used to prevent trying to obtain a solution to an
equation like x = f(x). Such a fixed-point equation may be solvable,
in some cases, if we know more about the function f, but this unifier
is a syntactic matcher. One could put in a hook at this point to ask
for a more powerful equation solver to help, but we are not doing
that. Most Prolog systems avoid implementing the occurs check for
efficiency reasons.

9 Because unification is so important, there has been a great deal of
work developing efficient algorithms. Memoization can be used to
make large improvements. For an extensive exposition of
unification algorithms see [6].

10 Others have added segment variables to pattern matchers or
unifiers [5], with some success. Apparently there are versions of
Prolog that have segment variables [34]. A detailed theoretical
treatment of an algorithm that includes sequence variables (another
name for segment variables) in a unifier can be found in Kutsia's
PhD thesis [79]. However, here we are not trying to build a
complete and correct segment unifier. We are just trying to show
how easy it is to add some useful new behavior to the elementary
unification procedure already built.

11 The extension to segments is very subtle. We thank Kenny Chen,
Will Byrd, and Michael Ballantyne for helping us think about this
experiment.

12 The procedure complement is a combinator for predicates:
complement makes a new predicate that is the negation of its
argument.



13 This is a one-sided match that could also be done with the earlier
matcher, but this ability to match expressions with variables on
both sides of the match is useful.

14 For an example of how a graph node is used, see g:cons on page
210. For a more complete description of bundle procedures see
page 395.

15 Castling is another special case. Castling is allowed under restricted
circumstances: when the king and the rook are in their initial
positions, the squares between the king and rook are unoccupied,
and the king is not in check and will not have to traverse or land in
a square where it would be in check.

16 There is also a pawn move, en passant capture, that depends on the
opponent's previous move.

17 We use zero-based indexing, unlike the traditional chess
conventions, but this is not important except for input and output
to players.

18 But notice that the success continuation of the graph-matcher
procedure is different from the success continuation of the
expression-matcher procedure. The expression-matcher success
continuation takes a dictionary and a number of elements eaten by
the matcher (to make segments work), whereas the graph-matcher
success continuation takes the final node and the dictionary
resulting from matching the matched part of the graph.

19 Although the actual name of the procedure is gmatch:finish-
compile-path, we abbreviate such names to elide the gmatch:
prefix in text explanations.



5 
Evaluation

One of the best ways to attack a problem is to make up a domain-
specific language in which the solution is easily expressed. If the
language you make up is powerful enough, many problems that are
similar to the one you are attacking will have easy-to-express solutions
in your language. This strategy is especially effective if you start with a
flexible mechanism. We explored this idea in limited contexts in
chapters 2, 3, and 4. Here we will pursue this idea in full generality.

When we make up a language we must give it meaning. If we want
the expressions of the language to describe computational processes,
we must build a mechanism that, when given expressions in the
language, evolves the desired process. An interpreter is just such a
mechanism. We will explore this creative realm starting with an
extensible version of the applicative order Scheme eval/apply
interpreter similar to the ones described in SICP [1], Chapter 4.

Scheme procedures are strict, requiring each argument to be
evaluated before the body of the procedure is entered. We next
generalize our interpreter, adding declarations to the formal
parameter list of a procedure. These declarations will allow a
procedure to defer evaluation of the corresponding argument to when
its value is actually needed, providing for lazy evaluation, with or
without memoization of the value. This declaration mechanism can
also be used for other information, such as types and units.

An interpreter is rather inefficient, because it must analyze the
expression to be interpreted in order to know what to do at each step.
This effort is repeated each time the interpreter encounters the same
expression. So we next separate the interpretation into two phases,
analysis and execution. The analysis phase examines the expression
and compiles an execution procedure, which when called will perform
the intent of the expression. The execution procedure runs without



access to the expression it was compiled from. The execution
procedures all have the same form, and constitute a system of
combinators.

We next add McCarthy's amb operator to allow us to do
nondeterministic evaluation and search. Remarkably, this requires no
change to the analysis part of the evaluator. The only change required
is in the format of the execution procedures, which are re-expressed in
continuation-passing style. The use of continuation-passing style
suggests exposing the underlying continuation to the programmer.

The procedure call/cc that exposes the underlying continuation is
a standard procedure in Scheme, and it turns out that all we need is
call/cc to implement amb directly in Scheme, so we conclude by
showing how to do this.



5.1 Generic eval/apply interpreter

Our first interpreter is constructed to be extensible. All significant
parts are generic procedures, and we are careful to avoid unnecessary
commitments. Let's start.

The essence of the interpreter is in two procedures: eval and
apply. The procedure eval takes an expression and an environment
as inputs. The expression is a combination of subexpressions that are
syntactically glued together. The environment gives meanings to some
of the symbols that appear in the expression. There are other symbols
that have meanings that are fixed in the definition of eval.1 But most
expressions are interpreted as combinations of an operator and
operands. Evaluation of the operator should yield a procedure and
evaluation of the operands should yield arguments. The procedure and
arguments are then passed to apply. The procedure usually names the
arguments with formal parameters. The procedure apply evaluates
the body of the procedure (using eval) in an environment in which
the formal parameters of the procedure are bound to the arguments.
This is the central computational loop of the interpreter.

What we just described is the traditional applicative-order
interpreter plan. In our interpreter we will pass the unevaluated
operands and the environment for their evaluation to apply to make it
possible to implement a variety of evaluation strategies, such as
normal order as well as applicative order.

The language we will be implementing is a Lisp variant.2 This
implies that the code is expressed as list structures. In Lisp all
compound expressions are lists, some of which start with
distinguished keywords. Compound expressions that have
distinguished keywords are called special forms. The compound
expressions that are not special forms are interpreted as applications
of procedures to arguments. The implementation will be organized as
a set of rules for each expression type, with the exception of
applications, which are distinguished by not being special forms. With
each rule we give the syntactic definition of the expression type. This



strategy can be used to implement almost any language, though a new
parser would be needed. With Lisp the reader converts the character-
string input into list structures, which are natural representations of
the abstract syntax tree (AST) of the language. With other languages
the AST is more elaborate and the parser is much more complicated.

5.1.1 eval

We define g:eval as a generic procedure with two arguments.

(define g:eval

  (simple-generic-procedure ’eval 2 default-eval))

The default case for eval is an application (sometimes described as a
combination).

(define (default-eval expression environment)

  (cond ((application? expression)

         (g:apply (g:advance

                   (g:eval (operator expression)

                           environment))

                  (operands expression)

                  environment))

        (else

         (error "Unknown expression type" expression))))

In Lisp-based languages the operator of a list representing an
application is the first element of the list and the operands are the rest
of the elements of the list.

(define (application? exp) (pair? exp))

(define (operator app) (car app))

(define (operands app) (cdr app))

Note how the code above follows the pattern we described on page
235. We are presenting both the interpretation of a particular syntactic
construct (application), and the definition of its syntax. Also as we
explained there, it is necessary to handle applications as the default
case of the generic procedure, because there is no special keyword
identifying an application in Lisp—instead it is identified by being a
list not starting with one of the distinguished keywords.

An application first evaluates the operator part of the expression



and then passes that value to g:apply along with the operands of the
expression and the current environment. However, after evaluating
the operator, we pass the value to the generic procedure g:advance.
The purpose of g:advance is to continue evaluations that have been
postponed. We will not need to postpone evaluations until section 5.2,
so until then g:advance is just an identity function:3

(define g:advance

  (simple-generic-procedure ’g:advance 1 (lambda (x) x)))

This is not the traditional way that apply is defined. By passing
along the unevaluated operands and the environment of the
application we leave open the option to introduce normal-order
evaluation as well as applicative-order evaluation; we also enable the
implementation of declarations on the formal parameters, and
perhaps some other options.

For each non-application expression type we provide a handler.
Self-evaluating expressions return themselves:

(define-generic-procedure-handler g:eval

  (match-args self-evaluating? environment?)

  (lambda (expression environment) expression))

In Lisp languages the self-evaluating expressions include the numbers,
the boolean values, and strings. In Scheme, number? is a rather
complicated predicate. The objects that satisfy number? include
integers of arbitrary size, rational fractions, reals, and complex
numbers.4

(define (self-evaluating? exp)

  (or (number? exp)

      (boolean? exp)

      (string? exp)))

There may be other self-evaluating expressions, so to make that option
really flexible we could have defined self-evaluating? as a generic
procedure. But here this is not necessary, because we could just make
another handler for g:eval to define any other self-evaluating
expression type that we might want to add.

Quotations are required in languages that allow manipulation of the



symbolic expressions of the language.5 A quotation is an expression
that protects a subexpression from evaluation.

(define-generic-procedure-handler g:eval

  (match-args quoted? environment?)

  (lambda (expression environment)

    (text-of-quotation expression)))

In Lisp-based languages the list-structure representation of a
quoted expression is a list beginning with the keyword quote. The
reader (parser) for Lisp expands any expression beginning with an
apostrophe character (e.g., ’(a b c)) into a quoted expression (here
(quote (a b c))).

(define (quoted? exp) (tagged-list? exp ’quote))

(define (text-of-quotation quot) (cadr quot))

A tagged list is just a list beginning with a given unique symbol:

(define (tagged-list? e t) (and (pair? e) (eq? (car e) t)))

Scheme variables are just looked up in the environment. In other
languages there are more complex rules about variables. For example,
in C there are lvalues and rvalues, and they are handled differently.

(define-generic-procedure-handler g:eval

  (match-args variable? environment?)

  lookup-variable-value)

In Lisp-based languages the variables are represented by symbols.6

(define (variable? exp) (symbol? exp))

The procedure lookup-variable-value looks up its argument in
the given environment. If no value is found for that variable, it looks
for a value in the underlying Scheme.7 If no value is found, an Unbound
variable error is signaled.

Binary conditional expressions (if-then-else) have a simple handler.
If the predicate part of the expression evaluates to a true value,
evaluate the consequent part of the expression, otherwise evaluate the
alternative part of the expression.

(define-generic-procedure-handler g:eval



  (match-args if? environment?)

  (lambda (expression environment)

    (if (g:advance

         (g:eval (if-predicate expression) environment))

        (g:eval (if-consequent expression) environment)

        (g:eval (if-alternative expression) environment))))

We must call g:advance on the evaluated predicate because we need
to know the value to make the decision. Notice that the evaluator for
if uses the if construct of the embedding language to do the work!

The Lisp syntax for the if expression is simple. If no alternative is
specified, the value of the if expression with a false predicate is the
value of the global variable the-unspecified-value.

(define (if? exp) (tagged-list? exp ’if))

(define (if-predicate exp) (cadr exp))

(define (if-consequent exp) (caddr exp))

(define (if-alternative exp)

  (if (not (null? (cdddr exp)))

      (cadddr exp)

      ’the-unspecified-value))

(define (make-if pred conseq alternative)

  (list ’if pred conseq alternative))

The first really interesting special form is the specification of an
anonymous procedure, represented by a lambda expression. A lambda
expression is a special form, the constructor for procedures.
Evaluation of a lambda expression constructs a procedure from the
formal parameters, the body, and the current environment. The
environment must be carried by the procedure if the variables in the
language are lexically scoped. In a lexically scoped language the free
variables in the body of the lambda expression (those that are not
formal parameters) are given meanings from the lexical context
(where the lambda expression appears textually).

(define-generic-procedure-handler g:eval

  (match-args lambda? environment?)

  (lambda (expression environment)

    (make-compound-procedure

     (lambda-parameters expression)

     (lambda-body expression)

     environment)))



The syntax for lambda expressions is:

(define (lambda? exp) (tagged-list? exp ’lambda))

(define (lambda-parameters lambda-exp) (cadr lambda-exp))

(define (lambda-body lambda-exp)

  (let ((full-body (cddr lambda-exp)))

    (sequence->begin full-body)))

(define (make-lambda parameters body)

  (cons ’lambda

        (cons parameters

              (if (begin? body)

                  (begin-actions body)

                  (list body)))))

Note that the body of a lambda expression may contain several
expressions. These are intended to be evaluated in sequence, to allow
for side-effecting actions, such as assignment, or I/O control actions,
such as printing. This is handled by sequence->begin, which creates a
begin special form.

(define (sequence->begin seq)

  (cond ((null? seq) seq)

        ((null? (cdr seq)) (car seq))

        (else

         (make-begin

          (append-map (lambda (exp)

                        (if (begin? exp)

                            (begin-actions exp)

                            (list exp)))

                      seq)))))

Notice that the procedure sequence->begin flattens nested begin
forms, preserving the order of execution. The syntax and evaluation of
begin forms is defined and described on page 242.

Derived expression types
The expression types already introduced are sufficient to conveniently
write most programs, but it is often nice to have some syntactic sugar.
These can be implemented by transformations of expressions into



combinations of simpler ones. Macros are a way to generalize such
transformations; but we choose not to build a macro expander as part
of our interpreter.8 Here we explicitly show how the Lisp multi-armed
conditional can be turned into a nest of if expressions:

(define-generic-procedure-handler g:eval

  (match-args cond? environment?)

  (lambda (expression environment)

    (g:eval (cond->if expression)

            environment)))

The procedure cond->if is a rather simple data manipulation:

(define (cond->if cond-exp)

  (define (expand clauses)

    (cond ((null? clauses)

           (error "COND: no values matched"))

          ((else-clause? (car clauses))

           (if (null? (cdr clauses))

               (cond-clause-consequent (car clauses))

               (error "COND: ELSE not last"

                      cond-exp)))

          (else

           (make-if (cond-clause-predicate (car clauses))

                    (cond-clause-consequent (car clauses))

                    (expand (cdr clauses))))))

  (expand (cond-clauses cond-exp)))

And here is the syntax for the cond special form:

(define (cond? exp) (tagged-list? exp ’cond))

(define (cond-clauses exp) (cdr exp))

(define (cond-clause-predicate clause) (car clause))

(define (cond-clause-consequent clause)

  (sequence->begin (cdr clause)))

(define (else-clause? clause)

  (eq? (cond-clause-predicate clause) ’else))

Because cond allows a sequence of actions for the consequent of a
clause, this definition also depends on sequence->begin.

Local variables can be introduced with let expressions. These are



implemented by translation into a combination with an explicit
lambda expression:

(define-generic-procedure-handler g:eval

  (match-args let? environment?)

  (lambda (expression environment)

    (g:eval (let->combination expression)

            environment)))

The syntax for let is:

(define (let? exp) (tagged-list? exp ’let))

(define (let-bound-variables let-exp)

  (map car (cadr let-exp)))

(define (let-bound-values let-exp)

  (map cadr (cadr let-exp)))

(define (let-body let-exp)

  (sequence->begin (cddr let-exp)))

(define (let->combination let-exp)

  (let ((names (let-bound-variables let-exp))

        (values (let-bound-values let-exp))

        (body (let-body let-exp)))

    (cons (make-lambda names body)

          values)))

Effects
If there are operations in the language that have effects, like
assignment or printing, they must be sequenced, because the order is
essential. In Scheme we syntactically represent such sequences of
operations with begin:

(define-generic-procedure-handler g:eval

  (match-args begin? environment?)

  (lambda (expression environment)

    (evaluate-sequence (begin-actions expression)

                       environment)))

(define (begin? exp) (tagged-list? exp ’begin))

(define (begin-actions begin-exp) (cdr begin-exp))

(define (make-begin actions) (cons ’begin actions))



The real work is actually in the sequence evaluation:

(define (evaluate-sequence actions environment)

  (cond ((null? actions)

         (error "Empty sequence"))

        ((null? (cdr actions))

         (g:eval (car actions) environment))

        (else

         (g:eval (car actions) environment)

         (evaluate-sequence (cdr actions)

                            environment))))

The value returned by evaluating a nonempty sequence of expressions
is the value of the last expression in the sequence. But effects caused
by executing expressions in the sequence happen in the order of the
sequence.

Most effects are implemented by assignment of variables. (Indeed,
input/output operations are usually implemented in hardware by
assignment to particular sensitive locations in the address space.) In
Scheme we allow a program to assign to a variable in the lexical
environment of the assignment statement:

(define-generic-procedure-handler g:eval

  (match-args assignment? environment?)

  (lambda (expression environment)

    (set-variable-value! (assignment-variable expression)

                         (g:eval (assignment-value expression)

                                 environment)

                         environment)))

The syntax for assignment is:

(define (assignment? exp) (tagged-list? exp 'set!))

(define (assignment-variable assn) (cadr assn))

(define (assignment-value assn) (caddr assn))

We also allow definition, the creation of a new variable with a given
value. A definition creates a new variable in the most local lexical
environment frame of the definition statement.

(define-generic-procedure-handler g:eval

  (match-args definition? environment?)

  (lambda (expression environment)

    (define-variable! (definition-variable expression)



                      (g:eval (definition-value expression)

                              environment)

                      environment)

    (definition-variable expression)))

The syntax for definitions is more complicated than the syntax for
assignment, because we allow multiple ways to define a procedure:9

(define (definition? exp) (tagged-list? exp 'define))

(define (definition-variable defn)

  (if (variable? (cadr defn))      ; (DEFINE  foo      ...)

      (cadr  defn)

      (caadr defn)))               ; (DEFINE (foo ...) ...)

(define (definition-value defn)

  (if (variable? (cadr defn))      ; (DEFINE  foo      ...)

      (caddr defn)

      (cons ’lambda                ; (DEFINE (foo p...) b...)

            (cons (cdadr defn)     ; =(DEFINE  foo

                  (cddr  defn))))) ;    (LAMBDA (p...) b...))

This completes the usual list of special forms that define the syntax
of the language. Of course, the generic procedure implementation
enables creation of new special forms easily, allowing the language to
grow to make it more convenient to express computational ideas that
were not well supported in the base language. But a language with
many different syntactic constructs may be difficult to learn,
document, and use; this is a classic engineering tradeoff (remember
Alan Perlis's maxim on page 159).

5.1.2 apply

The traditional Scheme apply takes two arguments, the procedure to
be applied and the evaluated arguments to be passed to the procedure.
This is sufficient for Scheme, because Scheme is a strict applicative-
order language with only lexically scoped variables.

By generalizing the interface to apply to take three arguments— the
procedure to be applied, the unevaluated operands, and the calling
environment—we make it possible to include procedures that require
normal-order evaluation for some parameters (e.g., call by need) or
procedures that make declarations on parameters, such as types and



units. We will make some extensions like these in section 5.2. The
environment argument also makes it possible to accommodate non-
lexically scoped variables, but we will not do so; it is generally a bad
idea. We will start out with Scheme applicative order, with generic
hooks for extension.

Our apply is a generic procedure with three arguments:

(define g:apply

  (simple-generic-procedure ’apply 3 default-apply))

(define (default-apply procedure operands calling-environment)

  (error "Unknown procedure type" procedure))

We will need handlers for the various kinds of procedures. Some
procedures, like arithmetic addition (usually named by the +

operator), are strict: they need all of their arguments evaluated before
they can compute a value. In Scheme all procedures are strict,
including primitive procedures (implemented in the system or
hardware below the level of the language). So we need a generic
handler for strict primitives:

(define-generic-procedure-handler g:apply

  (match-args strict-primitive-procedure?

              operands?

              environment?)

  (lambda (procedure operands calling-environment)

    (apply-primitive-procedure procedure
      (eval-operands operands calling-environment))))

The application of a primitive procedure is “magic” at this level of
detail. The operands evaluator, like if on page 238, must call
g:advance on the result of evaluation to ensure a value.

(define (eval-operands operands calling-environment)

  (map (lambda (operand)

         (g:advance (g:eval operand calling-environment)))

       operands))

Note that the order of evaluation of the operands is determined by the
behavior of map.

Procedures constructed by evaluating lambda expressions are not
primitive. Here we can take apart the procedure. We can grab the



formal parameter specifications, which are the names of the formal
parameters. We also can extract the body of the procedure, which we
will pass to eval with an environment that includes the formal
parameter bindings. For lexical scoping, that extended environment is
built on the environment packaged with the procedure by the
evaluation of the lambda expression that constructed the procedure.

(define-generic-procedure-handler g:apply

  (match-args strict-compound-procedure?

              operands?

              environment?)

  (lambda (procedure operands calling-environment)

    (if (not (n:= (length (procedure-parameters procedure))

                  (length operands)))

        (error "Wrong number of operands supplied"))

    (g:eval (procedure-body procedure)

            (extend-environment

             (procedure-parameters procedure)

             (eval-operands operands calling-environment)

             (procedure-environment procedure)))))

Here strict-compound-procedure? is true of all compound
procedures that have no declarations on any of their parameters.10

Driver loop
To interact with this evaluator we need a read-eval-print loop:

(define (repl)

  (check-repl-initialized)

  (let ((input (g:read)))

    (write-line (g:eval input the-global-environment))

    (repl)))

Here g:read issues a prompt, eval>, on the terminal. It accepts
characters and parses them, converting what it gets into an s-
expression. That s-expression is then evaluated with g:eval with
respect to the-global-environment and the result is written back to
the terminal. The procedure repl calls itself tail recursively. For this to
work, the global environment must be initialized:

(define the-global-environment

  ’not-initialized)



(define (initialize-repl!)

  (set! the-global-environment (make-global-environment))

  'done)

(define (check-repl-initialized)

  (if (eq? the-global-environment ’not-initialized)

      (error

       "Interpreter not initialized. Run (init) first.")))

This completes the elementary evaluator.



Exercise 5.1: Unbound-variable handling
In Lisps, including Scheme, attempting to evaluate an unbound
symbol is an unbound-variable error. However, in some algebraic
processes it is often sensible to allow an unbound symbol to be a self-
evaluating object. For example, if we generically extend arithmetic to
build algebraic expressions with symbolic values, as we did in chapter
3, it is sometimes useful to allow the following:

(+ (* 2 3) (* 4 5))
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(+ (* a 3) (* 4 5))

(+ (* a 3) 20)

Our generic arithmetic supported symbolic extensions: the
operators * and + were extended to build expressions when their
arguments were not reducible to numbers. But it did not allow the use
of unbound variables as literal numbers. Here the symbol a is
unbound. We may want it to be self-evaluating.

a. Make a generic extension to eval to allow this kind of behavior.
To make this work with the numerical primitives (+, *, -, /) it is
necessary to extend their behavior as well. Note that these
operators should be changed in the underlying Scheme
environment. As in chapter 3, the generic operator mechanism may
be given handlers that work in the underlying Scheme system.

b. Also augment apply to allow unbound symbols in the operator
position to be interpreted as literal functions, known only by their
names: (+ (f 3) (* 4 5)) ==> (+ (f 3) 20)

These extensions to eval and apply are generally dangerous,
because they hide real unbound-variable errors. Make them
contingent on the value of a user-settable variable: allow-self-
evaluating-symbols.



Exercise 5.2: n-ary procedures
Footnote 10 on page 246 points out a nasty assumption that we put
into the g:apply handler that implies a restriction on the future
expansion of this evaluator. In Scheme, if the procedure-parameters
of a procedure is not a list but rather a symbol, then that symbol is
taken as a single parameter that will be bound to the list of
arguments.11

In this exercise we change the interpreter to accept a single symbol
as the formal parameter list, so that a procedure can be defined to take
an indefinite number of arguments. In our interpreter the procedure
lambda-parameters (page 239) is happy to return a single symbol,
and everywhere it is called the result is passed to make-compound-
procedure. That value is retrieved by procedure-parameters, which
is used in g:apply. So it appears that the only part of the interpreter
that needs to be changed is g:apply.

Change g:apply to work with the new compound procedures. This
can be done by rewriting the existing strict-compound-procedure?
handler of g:apply (page 246), but it is both easier and clearer to
specialize that handler for the case where the procedure-parameters
is a list, and to add a new handler for the case where the procedure-
parameters is a symbol.



Exercise 5.3: Vectors of procedures
In mathematical text a common abuse of notation is to identify a tuple
of functions with a function that returns a tuple of values. For
example, if (cos 0.6) produces 0.8253356149096783 and if (sin
0.6) produces 0.5646424733950354 then we expect ((vector cos
sin) 0.6) to produce #(0.8253356149096783

0.5646424733950354).
Although we had an exercise 3.2 to extend the arithmetic to vectors,

those extensions did not modify the underlying language evaluator.
This behavior needs an extension to g:apply so it can handle vectors
of functions as a kind of function. Make this extension, demonstrate it,
and show that it interoperates with more conventional code.



Exercise 5.4: Your turn
Invent a fun, interesting construct that can easily be implemented
using generic eval/apply but would be rather painful without that
kind of generic support.



Exercise 5.5: Interoperation with the underlying system
As pointed out on page 238, evaluating the expression

eval> (map (lambda (x) (* x x)) ’(1 2 3))

in our interpreter does not work if the map in this expression refers to
the map procedure from the underlying Scheme system.

However, if we redefine map for our interpreter it does work:

eval> (define (map f l)

        (if (null? l)

            ’()

            (cons (f (car l)) (map f (cdr l)))))

map

eval> (map (lambda (x) (* x x)) ’(1 2 3))

(1 4 9)

Why does it not work to use the underlying procedures that take
procedural arguments, such as map? Explain. Outline a strategy to fix
the problem and implement your solution. Note: This is subtle to get
right, so don't spend infinite time trying to make it work perfectly.



Exercise 5.6: Different quotation
There have been interesting languages with very different evaluation
and quotation rules. For example, in MDL (see Wikipedia [91]) a
symbol is assumed to be self evaluating, and variables to be looked up
are distinguished with a prefix character. Also, in MDL a combination
is a special form, but with an implied keyword. Our evaluator can
easily be modified to interpret a MDL-like syntax, just by changing the
syntax definitions. Try it!



Exercise 5.7: Infix notation
Unlike Lisp, most computer languages use infix notations. If we
wanted to include infix expressions in Scheme we might write:

(infix

  "fact := lambda n:

            if n == 0

               then 1

               else n*fact(n-1)")

(fact 6)             ; The Lisp procedure is now defined
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(infix "fact(5)")    ; And it can be used in infix notation.
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This is entirely a small matter of syntax (ha!). However, it is an
interesting project to make it work. You do not need to change the
interpreter. The work is parsing the character string to compile it into
the corresponding Lisp expressions, in the same way that cond->if
works. Lisp programmers have done this many times, but people who
program in Lisp seem to like the native Lisp Polish prefix notation!12

Oh, well...



5.2 Procedures with non-strict arguments

In this section we will investigate adding declarations to the formal
parameters of a procedure to allow deferred evaluation of the
corresponding operands.

In Scheme, procedures are strict. Strict procedures require
evaluating all the operands of the calling expression and binding the
resulting arguments to the formal parameters before the body of the
procedure is evaluated. But for an if expression, the predicate part
must be evaluated to determine whether to evaluate the consequent
part or the alternative part; they won't both be evaluated. This is why
if must be a special form, not a procedure. A non-strict procedure is
one that defers the evaluation of some operands. How can we make it
possible for a programmer to define non-strict procedures as needed,
rather than just using a few special forms, such as if, that are
specified in the language definition?

For example, suppose we want to make a procedure unless that
works like the special form if in that it does not evaluate the
alternatives that are not needed.13 Using unless we could write:

(define (fib n)

  (unless (< n 2)

          (+ (fib (- n 1)) (fib (- n 2)))

          n))

For this definition of the Fibonacci function to work correctly, the
second operand of the unless expression should not be evaluated if n
< 2, and the third operand should not be evaluated if n ≥ 2. But the
first operand of the unless expression must always be evaluated to
determine the choice.

We need a way to determine which operands of unless to evaluate,
and which to defer. To do this we introduce a kind of declaration and
write:

(define (unless condition (usual lazy) (exception lazy))

  (if condition exception usual))



Here we define the procedure unless in terms of the special form if,
but we declare that the second and third arguments are lazy.14 The
first argument is, by default, strict.

We could have many kinds of declarations on formal parameters,
describing how to handle operands and arguments. A parameter could
be declared lazy and memoized, to implement call by need, as are
arguments to all procedures in languages like Haskell; a parameter
could be declared to require that its argument satisfy given predicates,
which could be types and units; etc.

Implementing generalized formal parameters
To implement generalized formal parameters, we need a special
applicator that handles the new cases. This is accomplished by adding
a single handler to g:apply, similar to the earlier one for strict
compound procedures (see page 246):

(define-generic-procedure-handler g:apply

  (match-args general-compound-procedure?

              operands?

              environment?)

  (lambda (procedure operands calling-environment)

    (if (not (n:= (length (procedure-parameters procedure))

                  (length operands)))

        (error "Wrong number of operands supplied"))

    (let ((params (procedure-parameters procedure))

          (body (procedure-body procedure)))

      (let ((names (map procedure-parameter-name params))

            (arguments

             (map (lambda (param operand)

                    (g:handle-operand param

                                      operand

                                      calling-environment))

                  params

                  operands)))

        (g:eval body

                (extend-environment names arguments

                 (procedure-environment procedure)))))))

This differs from the strict applicator in two ways: first, we must
extract the names of the parameters, since they could be wrapped in
declarations; second, we must handle the operands specially,



depending on the declarations. This is done by the generic procedures
procedure-parameter-name and g:handle-operand.

The procedure procedure-parameter-name allows us to add
declarations to a formal parameter and still be able to retrieve its
name. The default handler is the identity function, so the name of an
undecorated formal parameter is just itself.

(define procedure-parameter-name

  (simple-generic-procedure ’parameter-name 1 (lambda (x) x)))

The procedure g:handle-operand allows us to choose how to
process an operand based on the declarations of the corresponding
formal parameter:

(define g:handle-operand

  (simple-generic-procedure ’g:handle-operand 3

    (lambda (parameter operand environment)

      (g:advance (g:eval operand environment)))))

The default way to handle an operand without declarations is to
evaluate the operand, as was previously done by eval-operands on
page 245.

We need a syntax to allow us to decorate a formal parameter with
declarations. Here we choose to use a list beginning with the name of
the formal parameter:

(define-generic-procedure-handler procedure-parameter-name

  (match-args pair?)

  car)

We will start by implementing two kinds of declarations. The first is
lazy, which means the operand is evaluated only when its value is
needed, for example as the predicate of an if expression. The second
is lazy memo, which is like lazy except that the first time the operand
is evaluated, the value is remembered so that subsequent uses do not
require reevaluation.

If a parameter is specified to be lazy (or lazy memoized) the
evaluation of the operand must be postponed. The postponed
expression must be packaged with the environment that will be used
to give values to the free variables in that expression when its value is
required.15



(define-generic-procedure-handler g:handle-operand

  (match-args lazy? operand? environment?)

  (lambda (parameter operand environment)

    (postpone operand environment)))

(define-generic-procedure-handler g:handle-operand

  (match-args lazy-memo? operand? environment?)

  (lambda (parameter operand environment)

     (postpone-memo operand environment)))

Of course, we must extend g:advance, which so far has only a
default handler (see page 236), to do the postponed evaluation. Notice
that the result of g:advance may itself be a postponement, so we may
have to advance that.

(define-generic-procedure-handler g:advance

  (match-args postponed?)

  (lambda (object)

    (g:advance (g:eval (postponed-expression object)

                       (postponed-environment object)))))

If the expression is postponed with the intent of memoizing the result,
the result is saved by advance-memo!:

(define-generic-procedure-handler g:advance

  (match-args postponed-memo?)

  (lambda (object)

    (let ((value

           (g:advance

            (g:eval (postponed-expression object)

                    (postponed-environment object)))))

      (advance-memo! object value)

      value)))

The memoized value never needs to be evaluated again. The advance-
memo! procedure changes the type of the postponed object to satisfy
the predicate advanced-memo? and saves the value, making it
accessible by advanced-value:16

(define-generic-procedure-handler g:advance

  (match-args advanced-memo?)

  advanced-value)

Example: Lazy pairs and lists



Procedures with lazy parameters give us new power. For example, we
can define a constructor kons, and selectors kar and kdr, so that we
can make pairs without evaluating their contents.17 Here we have
implemented kons as a procedure that takes its arguments call by need
(memoized lazy). It produces a message acceptor, the-pair, for kar
and kdr. It also puts a “sticky note” on the-pair for identifying it as
the result of kons.

(define (kons (x lazy memo) (y lazy memo))

  (define (the-pair m)

    (cond ((eq? m ’kar) x)

          ((eq? m ’kdr) y)

          (else (error "Unknown message – kons" m x y))))

  (hash-table-set! kons-registrations the-pair #t)

  the-pair)

(define (kar x)

  (x ’kar))

(define (kdr x)

  (x ’kdr))

The reason why we need the sticky note is to be able to recognize a
kons pair:

(define (kons? object)

  (hash-table-exists? kons-registrations object))

Using this lazy pair mechanism we can easily implement stream-
type processing. Streams are like lists, but they are built as needed by
the processes that consume them.18 Thus a stream that is infinitely
long may be processed incrementally, with only a finite portion actual
at any time.

Some streams are finite, so it is useful to choose a representation
for the empty stream. Let's make it the same as the empty list:

(define the-empty-stream ’())

(define (empty-stream? thing)

  (null? thing))

We can add streams:



(define (add-streams s1 s2)

  (cond ((empty-stream? s1) s2)

        ((empty-stream? s2) s1)

        (else

         (kons (+ (kar s1) (kar s2))

                (add-streams (kdr s1) (kdr s2))))))

We can find the nth element of a stream:

(define (ref-stream stream n)

  (if (= n 0)

      (kar stream)

      (ref-stream (kdr stream) (- n 1))))

Given these, we can create a (potentially infinite) stream of
Fibonacci numbers with two initial entries and the rest of the stream
formed by adding the stream to its kdr:

(define fibs

  (kons 0 (kons 1 (add-streams (kdr fibs) fibs))))

Then we can look at a few Fibonacci numbers

(ref-stream fibs 10)

55

(ref-stream fibs 100)

354224848179261915075

The usual doubly recursive Fibonacci program is exponential, so one
could not expect to get the 100th entry in this sequence by that
method; but the fact that the kons pairs are memoized reduces this to
a linear problem. Notice that by this point in the sequence the ratio of
two successive Fibonacci numbers has converged to the golden ratio in
full precision:

(inexact

  (/ (ref-stream fibs 100)

     (ref-stream fibs 99)))

1.618033988749895



Exercise 5.8: Integrating differential equations
Unfortunately, the use of kons does not, in itself, solve all stream
problems. For example, the difficulty alluded to in SICP [1] section
4.2.3 (p. 411) does not automatically dissipate. Suppose we want to
integrate a differential equation given some initial conditions. We
make the following definitions:

(define (map-stream proc (items lazy memo))

  (if (empty-stream? items)

      items

      (kons (proc (kar items))

            (map-stream proc (kdr items)))))

(define (scale-stream items factor)

  (map-stream (lambda (x) (* x factor))

              items))

(define (integral integrand initial-value dt)

  (define int

    (kons initial-value

          (add-streams (scale-stream integrand dt)

                       int)))

  int)

(define (solve f y0 dt)

  (define y (integral dy y0 dt))

  (define dy (map-stream f y))

  y)

We try to find an approximation to e by integrating x!(t) = x(t) with
initial condition x(0) = 1. We know that e = x(1) so we write:

(ref-stream (solve (lambda (x) x) 1 0.001) 1000)

;Unbound variable: dy

We get an error—ugh!
However, now we have the tools to fix this problem. What has to be

changed to make this work as expected? Fix this program to get the
following behavior:

(ref-stream (solve (lambda (x) x) 1 0.001) 1000)



2.716923932235896

(Yes, we know this is a terrible approximation to e, but it illustrates a
programming point, not a numerical analysis point!)



Exercise 5.9: Why not kons?
The kons special form is equivalent to a cons with both arguments lazy
and memoized. If the arguments were not memoized, the computation
(ref-stream fibs 100) above would take a very long time.

a. Is there ever an advantage to not memoizing? When might it
matter?

b. Why could we not have defined kons simply as

(define (kons (a lazy memo) (d lazy memo))

  (cons a d))

using the primitive procedure cons imported from Scheme?

c. More generally, the Lisp community has avoided changing cons
to be kons, as recommended by Friedman and Wise (see footnote
17 on page 254). What potentially serious problems are avoided by
using cons rather than kons? Assume that we do not care about
small constant factors in performance.



Exercise 5.10: Restricted parameters
One nice idea is to build restrictions into the declaration of a formal
parameter. We might want to require that an arbitrary predicate be
true of a parameter, similar to our use of restrictions in pattern
variables in section 4.3.2. For example, we might want a procedure to
take three arguments: the first is any integer, but the second is prime,
and the third is unrestricted. This might be notated:

(define (my-proc (n integer?) (p prime?) g)

  ...)

Unfortunately, this kind of ad hoc design does not play well with other
declarations, like lazy and memo, unless we legislate the order of the
declarations or make them reserved identifiers. Suppose, for
convenience, we declare lazy and memo to be special keywords, and
require other declarations to be announced with a keyword, such as
restrict-to for a predicate:

(define (my-proc (n restrict-to integer?)

                 (p restrict-to prime? lazy)

                 g)

...)

a. Design an appropriate syntax. Make sure it is extensible in that
new declaration types can be added as needed. Express your syntax
in BNF and change the syntax procedures of your interpreter to
implement it.

b. Implement predicate restrictions. If a restriction is violated at
run time, the program should report an error. You may find
guarantee useful here.



Exercise 5.11: n-ary procedures, again!

a. In exercise 5.2 on page 248 we modified the g:apply handler to
allow the formal parameters of a procedure to be a single symbol
that is bound to a list of the arguments. Unfortunately, this way of
specifying a rest argument is not natural for a system where the
formal parameters may be decorated with declarations. However,
we can invent a decoration syntax that allows us to define
procedures with optional and rest arguments.

For example, if we allow the last formal parameter in the formal
parameter list be decorated with the word rest, it should be bound to
the unmatched arguments. This rest declaration should be usable
with other declarations on that argument. So we should be able to
create procedures like:

(lambda (x

         (y restrict-to integer? lazy)

         (z rest restrict-to list-of-integers?))

  ...)

where list-of-integers? is a predicate that is true of lists of
integers. The rest declaration should be able to be used with other
declarations, such as lazy and restrict-to.

Make rest declarations work!

b. It may also be useful to allow a procedure to have optional
arguments, possibly with specified default values. For example, a
numerical procedure could allow the user to specify a tolerance for
approximation, but specify a default value if the user does not
supply the tolerance:

(lambda (x (epsilon optional flo:ulp-of-one))

  ...)

Here flo:ulp-of-one is a globally defined symbol that specifies the
smallest power of two that when added to 1.0 produces a value that is
not equal to 1.0. In the C library it is called DBL EPSILON. (For those



few of you who care, in IEEE double-precision floating point the value
of flo:ulp-of-one is 2.220446049250313e-16.)

Make optional declarations work too! Be sure that your extension
can mix and match with all other declarations that make sense.



5.3 Compiling to execution procedures

The evaluator that we have been working with is extremely flexible and
extensible, but it is dumb: our programs run rather slowly. One culprit
is that the evaluator is repeatedly looking at the syntax (however
simple) of the program. We avoided this problem in chapter 4 by
transforming each matcher pattern into a composition of matcher
procedures that all have the same form—a combinator language—in
section 4.3. In interpreting a language we can avoid reexamining the
syntactic structure by similarly compiling into a composition of
execution procedures. So before getting deeper into evaluation, let's
make this transition.

The critical idea is to separate the problem of evaluation of an
expression relative to an environment into two phases. In the first
phase the expression is analyzed and converted into an execution
procedure. In the second phase that execution procedure is applied to
an environment, producing the expected evaluation result. We
implement this idea directly, as the composition of the two phases.

(define (x:eval expression environment)

  ((analyze expression) environment))

The analysis and conversion of the expression is called compilation,
and the work that it does is said to be done at compile time. The
compiler extracts that part of the behavior that does not depend on the
values of the free variables in the expression. This is mostly syntactic
analysis, but it is also a venue for some optimizations that are
implementable by syntactic rules. The resulting execution procedure
depends on the mapping of symbols to values specified in the
environment; the work it does is said to be done at run time.

Analysis of expressions
Since we want to be able to extend the language syntax as needed, we
implement the analysis as a generic procedure, with the default being
an application of an operator to operands. This has to be a default for



Lisp/Scheme because there is no syntactic keyword that distinguishes
an application.19

(define x:analyze

  (simple-generic-procedure ’x:analyze 1 default-analyze))

The convention for x:analyze is that it takes an expression as an
argument and returns an execution procedure, which takes one
argument, an environment.

The procedure analyze captures a common usage pattern:

(define (analyze expression)

  (make-executor (x:analyze expression)))

The purpose of wrapping the execution procedure with the procedure
make-executor is to aid in debugging. The resulting executor is also a
procedure, with the same arguments and returned value as the
execution procedure that it wraps. One useful aspect of this wrapper is
that it maintains an “execution trace” that can be helpful while
determining how a program got to a point of failure.

As we said, the default analysis is of an application.

(define (default-analyze expression)

  (cond ((application? expression)

         (analyze-application expression))

        (else (error "Unknown expression type" expression))))

(define (analyze-application expression)

  (let ((operator-exec (analyze (operator expression)))

        (operand-execs (map analyze (operands expression))))

    (lambda (environment)

      (x:apply (x:advance (operator-exec environment))

               operand-execs

               environment))))

Notice the division of labor here: the operator and the operands are
extracted from the expression and analyzed to make up the execution
procedures operator-exec and operand-execs. This may require
significant analysis. The execution procedure for the application is
then a procedure (created by the lambda expression) that takes an
environment and does the application. The procedure x:apply (on
page 265) is analogous to g:apply in the interpreter; but x:apply



takes execution procedures for the operands, rather than the operand
expressions that were used by g:apply. The procedure x:advance,
analogous to g:advance, is introduced for the same reason. Every part
of the evaluator can be transformed in this way.

The transformation of self-evaluating expressions (such as
numbers, boolean values, or strings) is trivial. The only hard part of
this is the actual syntax of the expressions, which is handled by the
Scheme parser. The text of the programs is parsed into tokens and s-
expressions before it ever gets to the evaluator, so we need not concern
ourselves with those complexities here.

(define (analyze-self-evaluating expression)

  (lambda (environment) expression))

(define-generic-procedure-handler x:analyze

  (match-args self-evaluating?)

  analyze-self-evaluating)

Quotation is easy, again because the hard part is in the parser.20

(define (analyze-quoted expression)

  (let ((qval (text-of-quotation expression)))

    (lambda (environment) qval)))

(define-generic-procedure-handler x:analyze

  (match-args quoted?)

  analyze-quoted)

Variables are also easy. Once we identify the variable, all of the
work is in the execution procedure.

(define (analyze-variable expression)

  (lambda (environment)

    (lookup-variable-value expression environment)))

(define-generic-procedure-handler x:analyze

  (match-args variable?)

  analyze-variable)

Procedure definitions, expressed in Lisp/Scheme by lambda

expressions, are an example of a powerful division of labor. Before
building the execution procedure, the analyzer (compiler) parses the
lambda expression, extracting the formal parameter specifications,



and compiles the body of the expression. Thus the execution
procedure for the lambda expression, and the code that eventually
executes the body, need not do that work.

(define (analyze-lambda expression)

  (let ((vars (lambda-parameters expression))

        (body-exec (analyze (lambda-body expression))))

    (lambda (environment)

      (make-compound-procedure vars body-exec environment))))

(define-generic-procedure-handler x:analyze

  (match-args lambda?)

  analyze-lambda)

The special form if is another very clear example of the advantage
of separating analysis from execution. The three parts of the if
expression are analyzed at compile time, allowing the execution
procedure to do no more work than extract the boolean value from the
predicate to decide whether to do the consequent or the alternative.
The analysis of the subexpressions is not necessary to do at run time
(when the execution procedure is used).

(define (analyze-if expression)

  (let ((predicate-exec

         (analyze (if-predicate expression)))

        (consequent-exec

         (analyze (if-consequent expression)))

        (alternative-exec

         (analyze (if-alternative expression))))

    (lambda (environment)

      (if (x:advance (predicate-exec environment))

          (consequent-exec environment)

          (alternative-exec environment)))))

(define-generic-procedure-handler x:analyze

  (match-args if?)

  analyze-if)

Sequences of expressions to be evaluated are an especially good
example of separation of analysis and execution. There is no good
reason to recompile a sequence of expressions every time we enter the
body of a procedure; this work can be done once and for all at compile
time.

The analyze-begin procedure first analyzes each subexpression of



the begin expression, producing a list of execution procedures
(preserving the order of the expressions in the begin expression).
These execution procedures are then glued together using reduce-
right and a pairwise combinator that takes two execution procedures
and produces an execution procedure that executes the two given
execution procedures in sequence.21

(define (analyze-begin expression)

  (reduce-right (lambda (exec1 exec2)

                  (lambda (environment)

                    (exec1 environment)

                    (exec2 environment)))

                #f

                (map analyze

                     (let ((exps

                            (begin-actions expression)))

                       (if (null? exps)

                           (error "Empty sequence")) 

                       exps))))

(define-generic-procedure-handler x:analyze

  (match-args begin?)

  analyze-begin)

The treatment of assignments is not problematical in the absence of
compiler optimizations.

(define (analyze-assignment expression)

  (let ((var

         (assignment-variable expression))

        (value-exec

         (analyze (assignment-value expression))))

    (lambda (environment)

      (set-variable-value! var

                           (value-exec environment)

                           environment)

      ’ok)))

(define-generic-procedure-handler x:analyze

  (match-args assignment?)

  analyze-assignment)

However, if there are compiler optimizations to be done, assignments
pose serious problems. Indeed, assignments introduce time into a
program: some things happen before the assignment and some



happen after the assignment, and the assignment can change the
events that reference the variable that was changed. Thus, for
example, common subexpressions may not really have the same value
if they reference a variable that can be assigned!

Definitions are not a problem, unless we think of them (and
incorrectly use them) as assignments, potentially interfering with
compiler optimizations.

(define (analyze-definition expression)

  (let ((var

         (definition-variable expression))

        (value-exec

         (analyze (definition-value expression))))

    (lambda (environment)

      (define-variable! var

                        (value-exec environment)

                        environment)

      var)))

(define-generic-procedure-handler x:analyze

  (match-args definition?)

  analyze-definition)

Special forms that are implemented by transformations of
expressions, such as cond and let, are really easy in this system; we
simply compile the transformed expression. Indeed, this is the place
where a very general macro facility could be hooked in.

(define-generic-procedure-handler x:analyze

  (match-args cond?)

  (compose analyze cond->if))

(define-generic-procedure-handler x:analyze

  (match-args let?)

  (compose analyze let->combination))

Application of procedures
The execution procedure for an application calls the execution
procedure for the operator to obtain the compound procedure to be
applied. (See analyze-application on page 260.) The operands have
also been converted to execution procedures.

The procedure x:apply is analogous to g:apply in the elementary



evaluator (on page 245):

(define x:apply

  (simple-generic-procedure ’x:apply 3 default-apply))

(define (default-apply procedure operand-execs environment)

  (error "Unknown procedure type" procedure))

Note that the default-apply here is the same as the one used by
g:apply except for the names of the two unused parameters.

As before, we need handlers for application of the various kinds of
procedures, with particular kinds of parameters. The application
handler for strict primitive procedures has to force the arguments and
then execute the primitive procedure.

(define-generic-procedure-handler x:apply

  (match-args strict-primitive-procedure?

              executors?

              environment?)

  (lambda (procedure operand-execs environment)

    (apply-primitive-procedure procedure

     (map (lambda (operand-exec)

            (x:advance (operand-exec environment)))

          operand-execs))))

The application handler for general procedures is only slightly
different than in the elementary evaluator shown earlier. The
difference is that we have execution procedures rather than operand
expressions to work with.

(define-generic-procedure-handler x:apply

  (match-args compound-procedure? executors? environment?)

  (lambda (procedure operand-execs calling-environment)

    (if (not (n:= (length (procedure-parameters procedure))

                  (length operand-execs)))

        (error "Wrong number of operands supplied"))

    (let ((params (procedure-parameters procedure))

          (body-exec (procedure-body procedure)))

      (let ((names (map procedure-parameter-name params))

            (arguments

             (map (lambda (param operand-exec)

                    (x:handle-operand param

                                      operand-exec

                                      calling-environment))

                  params



                  operand-execs)))

        (body-exec (extend-environment names arguments

                     (procedure-environment procedure)))))))

This application handler for compound procedures needs to be able to
deal with the various kinds of formal parameters that may be present
in the compound procedure. This is accomplished, in our usual way,
by making x:handle-operand a generic procedure. The default, for an
operand to be evaluated before entering the body of the compound
procedure, is to immediately execute the operand execution procedure
to obtain a value. However, lazy parameters and memoized lazy
parameters need to be able to postpone the execution appropriately.

(define x:handle-operand

  (simple-generic-procedure ’x:handle-operand 3

    (lambda (parameter operand-exec environment)

      (operand-exec environment))))

(define-generic-procedure-handler x:handle-operand

  (match-args lazy? executor? environment?)

  (lambda (parameter operand-exec environment)

    (postpone operand-exec environment)))

(define-generic-procedure-handler x:handle-operand

  (match-args lazy-memo? executor? environment?)

  (lambda (parameter operand-exec environment)

    (postpone-memo operand-exec environment)))

The postponement of an execution procedure for an operand is the
same as the postponement of an operand expression. But the handlers
for the generic procedure x:advance to deal with a postponed operand
execution procedure are different from those for g:advance: the
postponed execution procedure must be called on the postponed
environment rather than evaluated relative to that environment
(compare with g:advance on page 253).

(define-generic-procedure-handler x:advance

  (match-args postponed?)

  (lambda (object)

    (x:advance ((postponed-expression object)

                (postponed-environment object)))))

(define-generic-procedure-handler x:advance

  (match-args postponed-memo?)



  (lambda (object)

    (let ((value

           (x:advance ((postponed-expression object)

                       (postponed-environment object)))))

      (advance-memo! object value)

      value)))

The handling of operands in this x:apply is not very clever. In fact,
it does lots of “parsing” of the formal parameter list in the execution
procedure, so we really did not fully compile the compound procedure.
One step to improve this compilation would be to separate out the
handler for strict compound procedures, as we did earlier. Fixing this
nastiness is your job in exercise 5.16.



Exercise 5.12: Implementing n-ary procedures
In exercises 5.2 and 5.11 we noted that it is often valuable to have
procedures that can take an indefinite number of arguments. The
addition and multiplication procedures in Scheme are examples of
such procedures.

To define such a procedure in Scheme, we specify the formal
parameters of a lambda expression as a single symbol rather than a
list. That symbol is bound to a list of the arguments supplied. For
example, to make a procedure that takes several arguments and
returns a list of the squares of the arguments, we can write:

(lambda x (map square x))

or

(define (ss . x) (map square x))

and then we can say

(ss 1 2 3 4) ==> (1 4 9 16)

Modify the analyzing interpreter to allow this construct.
Hint: You do not need to change the code involving define or

lambda in the syntax definitions! This is entirely a change in the
analyzer.

Demonstrate that your modification allows this kind of procedure
and that it does not cause other troubles.



Exercise 5.13: Simplifying debugging
One problem with this compiler is that the execution procedures are
all anonymous lambda expressions. So there is little information for a
backtrace to report. However, it is easy to improve matters. If we
rewrite the procedure that makes execution procedures for
applications

(define (analyze-application exp)

  (let ((operator-exec (analyze (operator exp)))

        (operand-execs (map analyze (operands exp))))

    (lambda (env)

      (x:apply (x:advance (operator-exec env))

               operand-execs

               env))))

like this:

(define (analyze-application exp)

  (let ((operator-exec (analyze (operator exp)))

        (operand-execs (map analyze (operands exp))))

    (define (execute-application env)

      (x:apply (x:advance (operator-exec env))

               operand-execs

               env))

    execute-application))

then (in MIT/GNU Scheme) the execution procedure will have a name
that tells us what kind of execution procedure it is. Implement this
idea in all the execution procedures.

Think of, and perhaps implement, other ways we could improve the
debuggability of the runtime code without impairing the execution
speed. One thing you might do is add the expression exp as a “sticky
note” on the execution procedure.



Exercise 5.14: Constant folding
Assume we have a declaration to tell the analyzer that certain symbols
have a given meaning (for example a declaration that the conventional
arithmetic operators {+, -, *, /, sqrt} refer to known constant
procedures). Then any combination of constants with these operators,
such as (/ (+ 1 (sqrt 5)) 2), may be evaluated by the analyzer at
compile time and the result used instead of executing the computation
at run time. This compile-time optimization is called constant folding.

Implement constant folding in the analyzer. To do constant folding,
the analyzer needs to know which symbols in the program text it can
count on to be bound to known values. For example, it needs to know
if car is actually bound to the primitive selector of pairs. Assume that
the analyzer can call a procedure that finds the bindings of known
symbols. This procedure should take a symbol and return the value
that the analyzer may depend on, or #f if the symbol is not under
control of the analyzer.



Exercise 5.15: Other optimizations
There are many simple transformations that can improve the
execution of a program. For example, we can use our pattern-
matching technology to make a term-rewriting system that
implements peephole optimization and loop-invariant code motion.
Perhaps it would be nice to add common subexpression elimination;
but be careful about side effects due to assignments. Add a phase of
optimization to the analysis, implement some classic compiler
optimizations, and show their effects.



Exercise 5.16: Compiling formal-parameter declarations
Although the transformation to compositions of execution procedures
is quite effective, and produces much faster code than straight
interpretation, the version we presented is not very clever: the
compound-procedure execution procedure for x:apply parses the
formal parameter list to determine how to handle the operands. This
should really be done at compile time rather than run time: the
analysis of the lambda expression that made the compound procedure
should produce an execution procedure that knows what to do with
the operands and calling environment.

Figure this out and do it. Make sure that you do not carry the calling
environment any further than is absolutely needed.

Note: This is a big project.



5.4 Exploratory behavior

We have already encountered explicit backtracking search for
matching segment variables in pattern matching. But even in the
absence of segment variables, the implementation of the term-
rewriting system required some backtracking search. When a rule's
consequent expression determined that the match was not selective
enough for the consequent to replace the matched part of the data,
even though the antecedent pattern of the rule matched a piece of
data, the consequent expression returned #f, failing back into the
match and perhaps trying a different rule.

Also, the trie mechanism for optimizing the access to a generic
procedure handler requires backtracking. The trie chases a sequence
of predicates that the sequence of arguments must satisfy. But there
may be multiple ways that an initial segment of predicates matches the
initial segment of arguments, so there is an implicit search built into
the trie mechanism.

We normally think of backtracking, and its extreme use in search,
as an AI technique. However, backtracking can be viewed as a way of
making systems that are modular and independently evolvable, as in
the exploratory behavior of biological systems. Consider a simple but
practical example: solving a quadratic equation. There are two roots to
a quadratic. We could return both, and assume that the user of the
solution knows how to deal with that, or we could return one and hope
for the best. (The canonical square-root procedure sqrt returns the
positive square root, even though there are two square roots!) The
disadvantage of returning both solutions is that the receiver of that
result must know to try the computation with both and either reject
one, or return both results of the computation, which may itself have
made some choices. The disadvantage of returning only one solution is
that it may not be the right one for the receiver's purpose. This can be
a real problem in simulations of physical systems.

Linguistically implicit search



The searches we have explicitly built are okay, but perhaps we can do
better by building a backtracking mechanism into the linguistic
infrastructure. The square-root procedure should return one of the
roots, with the option to change its mind and return the other one if
the first choice is determined to be inappropriate by the receiver. It is,
and should be, the receiver's responsibility to determine if the
ingredients to its computation are appropriate and acceptable. This
may itself require a complex computation, involving choices whose
consequences may not be apparent without further computation; so
the process is recursive. Of course, this gets us into potentially deadly
exponential searches through all possible assignments to all the
choices that have been made in the program.

It is important to consider the extent to which a search strategy can
be separated from the other parts of a program, so that one can
interchange search strategies without greatly modifying the program.
Here we take the further step of pushing search and search control
into the infrastructure that is supported by the language, and not
explicitly building search into our program at all. Making search
implicit may encourage excessive use of search. As usual, modular
flexibility can be dangerous.

This idea has considerable history. In 1961 John McCarthy [90] had
the idea of a nondeterministic operator, amb, which could be useful for
representing nondeterministic automata. In 1967 Bob Floyd [35] had
the idea of building backtracking search into a computer language as
part of the linguistic infrastructure. In 1969 Carl Hewitt [56] proposed
a language, PLANNER, that embodied these ideas. In the early 1970s
Colmerauer, Kowalski, Roussel, and Warren developed Prolog [78], a
language based on a limited form of first-order predicate calculus,
which made backtracking search implicit.22

5.4.1 amb

McCarthy's amb takes any number of arguments. The value of the amb
expression is the value of one of the arguments, but we don't know in
advance which one is appropriate. For example,

(amb 1 2 3)



produces the value 1 or 2 or 3, depending on the future of the
computation. The expression (amb), with no arguments, has no
possible values: it is a computational failure, rejecting the choices
previously made.

An expression using amb may have many possible values. To see all
the possible values we print one and then cause a failure, forcing the
production of the next value, until there are no more to be had.

(begin

  (newline)

  (write-line (list (amb 1 2 3) (amb ’a ’b)))

  (amb))

;;; Starting a new problem (1 a)

(2 a)

(3 a)

(1 b)

(2 b)

(3 b)

;;; There are no more values

Using amb we can generate Pythagorean triples rather easily. We
use amb to generate triples of integers and reject the ones that are not
Pythagorean.

To facilitate programming with amb, we introduce a helper. We use
require as a filter that will force a failure and backtrack if its
argument predicate expression is not true.

(define (require p)

  (if (not p) (amb) ’ok))

To obtain some integer in an interval, we write:

(define (an-integer-between low high)

  (require (<= low high))

  (amb low (an-integer-between (+ low 1) high)))

With these helpers we can write the search for Pythagorean triples
in a very intuitive form:

(define (a-pythagorean-triple-between low high)

  (let ((i (an-integer-between low high)))

    (let ((j (an-integer-between i high)))

      (let ((k (an-integer-between j high)))

        (require (= (+ (* i i) (* j j))



                    (* k k)))

        (list i j k)))))

(begin

  (newline)

  (write-line (a-pythagorean-triple-between 1 20))

  (amb))

;;; Starting a new problem

(3 4 5)

(5 12 13)

(6 8 10)

(8 15 17)

(9 12 15)

(12 16 20)

;;; There are no more values

This seems like a generally useful facility. Let's see how we can make it
part of our language.

5.4.2 Implementing amb
It is nice that we separated the analysis of the expressions of the
language from the execution, because that allows us to change the
execution without changing any of the syntactic analysis. So building
nondeterministic search into the language is a matter of changing only
the execution procedures. The critical step is to transform the
execution procedures into continuation-passing style, where in
addition to the environment argument, each execution procedure
takes two continuation arguments: one, typically named succeed, that
is called when the computation is successful, and the other, typically
named fail, that is called when the computation is unsuccessful.

The execution procedure returns a proposed value by calling the
success continuation with the value and a failure continuation. The
failure continuation is the “complaint department”: if some future of
the computation does not like the tendered value, it may call the
failure continuation with no arguments to demand a different result.
(In section 4.3 we used a returned value of #f as a failure indication.
In section 4.2.2 we used success and failure continuations. The use of
success and failure continuations is more flexible and can be expanded
to include information about why the value was rejected.)

So the general pattern of an execution procedure will be:



(lambda (environment succeed fail)

  ;; succeed = (lambda (value fail)

                 ;; Try this value.

                 ;; if don't like it (fail).

                 ;; ...)

  ;; fail = (lambda () ...)

  ...

  ;; Try to make a result.  If cannot, (fail).

  ...)

The transformation to continuation-passing style is a bit
unpleasant, as it expands the code considerably, but it is basically
mechanical. For example, the analyze-application procedure on
page 260 is:

(define (analyze-application expression)

  (let ((operator-exec (analyze (operator expression)))

        (operand-execs (map analyze (operands expression))))

    (lambda (environment)

      (x:apply (x:advance (operator-exec environment))

               operand-execs

               environment))))

If we transform this code to continuation-passing style we get:23

(define (analyze-application exp)

  (let ((operator-exec (analyze (operator exp)))

        (operand-execs (map analyze (operands exp))))

    (lambda (env succeed fail)

      (operator-exec env

                     (lambda (operator-value fail-1)

                       (a:advance operator-value

                                  (lambda (procedure fail-2)

                                    (a:apply procedure

                                             operand-execs

                                             env

                                             succeed

                                             fail-2))

                                  fail-1))

                     fail))))

This execution procedure is more complicated than the one it was
derived from. In the body of the original execution procedure, the
expression (operator-exec environment) returns a value to the
expression (x:advance ...), which in turn returns a value to the



expression (x:apply). In the new execution procedure, these nested
expressions are gone. Each procedure “returns” by calling a procedure
that accepts the results of its computation.

Since we will often have to force a value, it is appropriate to make
an abstraction that captures the forcing. The procedure execute-
strict hides the uninteresting details associated with the process of
forcing the evaluation of a postponed expression in order to ensure an
unpostponed value. In analyze-application above, it is used to force
the value of the operator in order to get an applicable procedure.

(define (execute-strict executor env succeed fail)

  (executor env

            (lambda (value fail-1)

              (a:advance value succeed fail-1))

            fail))

The procedure execute-strict calls the given execution procedure
(executor). The result of that is then passed to a:advance to be
forced. The forced value is then passed to the success continuation
(succeed) of execute-strict, effectively returning the result of the
forcing to the caller of execute-strict.

Using execute-strict we can rewrite analyze-application:

(define (analyze-application exp)

  (let ((operator-exec (analyze (operator exp)))

        (operand-execs (map analyze (operands exp))))

    (lambda (env succeed fail)

      (execute-strict operator-exec

                      env

                      (lambda (procedure fail-2)

                        (a:apply procedure

                                 operand-execs

                                 env

                                 succeed

                                 fail-2))

                      fail))))

Each of the execution procedures has to be transformed in this way.
We use execute-strict in analyze-if to force the value of the
predicate of the conditional, without which we cannot proceed:

(define (analyze-if exp)

  (let ((predicate-exec (analyze (if-predicate exp)))



        (consequent-exec (analyze (if-consequent exp)))

        (alternative-exec (analyze (if-alternative exp))))

    (lambda (env succeed fail)

      (execute-strict predicate-exec

                      env

                      (lambda (pred-value pred-fail)

                        ((if pred-value

                             consequent-exec

                             alternative-exec)

                         env succeed pred-fail))

                      fail))))

Most of the transformations are straightforward, and we will not
burden you with the details in this text. But there is an interesting
case: assignments. Often in backtracking systems we need two
different kinds of assignment. The usual permanent assignment, set!,
is useful for accumulating information during a search process, such
as how many times a particular branch is investigated. There is also an
undoable assignment maybe-set! that must be undone if the branch it
is on is retracted. The usual permanent assignment is implemented as:

(define (analyze-assignment exp)

  (let ((var (assignment-variable exp))

        (value-exec (analyze (assignment-value exp))))

    (lambda (env succeed fail)

      (value-exec env

                  (lambda (new-val val-fail)

                    (set-variable-value! var new-val env)

                    (succeed ’ok val-fail))

                  fail))))

The undoable assignment is more complex. The failure continuation
passed with the successful assignment reverts the value of the assigned
variable to its previous value.

(define (analyze-undoable-assignment exp)

  (let ((var (assignment-variable exp))

        (value-exec (analyze (assignment-value exp))))

    (lambda (env succeed fail)

      (value-exec env

                  (lambda (new-val val-fail)

                    (let ((old-val

                           (lookup-variable-value var env)))

                      (set-variable-value! var new-val env)

                      (succeed ’ok



                               (lambda ()

                                 (set-variable-value! var

                                                      old-val

                                                      env)

                                 (val-fail)))))

                  fail))))

The only other interesting case is the implementation of amb itself.
Here is where we have to select the next alternative if the last one
tendered is rejected. This is done by the failure continuation for the
current alternative:

(define (analyze-amb exp)

  (let ((alternative-execs

         (map analyze (amb-alternatives exp))))

    (lambda (env succeed fail)

      (let loop ((alts alternative-execs))

        (if (pair? alts)

            ((car alts) env

                        succeed

                        (lambda ()

                          (loop (cdr alts))))

            (fail))))))

If there are no alternatives left, the execution procedure for amb calls
the failure continuation it was called with. This makes the program
execute a depth-first search of the tree of alternatives. The alternatives
are examined by cdring down the list of alternatives; thus the search
proceeds in left-to-right order.24

Except for adjustments to the read-eval-print loop (page 246) to
make it work with the continuation-passing structure, that is all there
is to it!



Exercise 5.17: A puzzle
Formalize and solve the following puzzle using amb:
Two women (Alyssa and Eva) and four men (Ben, Louis, Cy, and Lem)
are seated at a round table, playing cards. Each has a hand; no two of
the hands are equally strong.

Ben is seated opposite Eva.

The man at Alyssa's right has a stronger hand than Lem has.

The man at Eva's right has a stronger hand than Ben has.

The man at Ben's right has a stronger hand than Cy has.

The man at Ben's right has a stronger hand than Eva has.

The woman at Lem's right has a stronger hand than Cy has.

The woman at Cy's right has a stronger hand than Louis has.

What is the arrangement at the table? Is it unique up to rotation of the
table?
Use amb to specify the alternatives that are possible for each choice.
Also determine how many solutions there are if we are not told that
“The man at Ben's right has a stronger hand than Cy has,” but rather
that “The man on Ben's right is not Cy.” Explain this result.

Note: The most straightforward solution is slow; it takes a few
hours on a laptop (2017). However, there is a clever solution that
converges in only about 2 minutes.25



Exercise 5.18: Failure detection
Implement a new construct called if-fail that permits a program to
catch the failure of an expression. if-fail takes two expressions. It
evaluates the first expression as usual, and returns its value as usual if
the evaluation succeeds. If the evaluation fails, however, the value of
the second expression is returned, as in the following example:

(if-fail (let ((x (amb 1 3 5)))

           (require (even? x))

           x)

         ’all-odd)

all-odd

(if-fail (let ((x (amb 1 3 4 5)))

           (require (even? x))

           x)

         ’all-odd)

4

Hint: This is trivial!



Exercise 5.19: Assignment
What are the results of the following evaluations, where if-fail is as
specified in exercise 5.18?

(let ((pairs ’()))

  (if-fail (let ((p (prime-sum-pair ’(1 3 5 8) ’(20 35 110))))

             (set! pairs (cons p pairs))

             (amb))

           pairs))

(let ((pairs ’()))

  (if-fail (let ((p (prime-sum-pair ’(1 3 5 8) ’(20 35 110))))

             (maybe-set! pairs (cons p pairs))

             (amb))

           pairs))

You may use the following definitions:

(define (prime-sum-pair list1 list2)

  (let ((a (an-element-of list1))

        (b (an-element-of list2)))

    (require (prime? (+ a b)))

    (list a b)))

(define (an-element-of lst)

  (if (null? lst)

      (amb)

      (amb (car lst)

           (an-element-of (cdr lst)))))

(define (prime? n)

  (= n (smallest-divisor n)))

(define (smallest-divisor n)

  (define (find-divisor test-divisor)

    (cond ((> (square test-divisor) n) n)

          ((divides? test-divisor n) test-divisor)

          (else (find-divisor (+ test-divisor 1)))))

  (define (divides? a b)

    (= (remainder b a) 0))

  (find-divisor 2))



Exercise 5.20: Choice ordering
The amb mechanism, as written, always tries the choices in the order
given in the amb expression. But sometimes we can use contextual
information to make a better ordering. For example, in a board game
the choice of a move from the possible legal moves should depend on
the state of the game board. Let's invent a version of amb that can give
us this kind of flexibility. Let's assume that each choice expression is
paired with a numerical weight expression:

(choose (<weight-1> <choice-1>) ... (<weight-n> <choice-n>))

We can evaluate all the weight expressions and use them to choose the
next choice expression to be evaluated and returned. Of course, after a
choice is made, it is exhausted, and if a failure gets back to this choose
form, the remaining weight expressions must be reevaluated before
making the next choice.

a. Implement choose so that a choice with the largest weight is
chosen.

b. In real situations the weights are usually not strong enough to
make a unique choice. Sometimes a good strategy is to make a
random choice with probability that is proportional to the
computed weights. Implement an alternative chooser pchoose,
with the same syntax as choose, that works in this way.



5.5 Exposing the underlying continuations

Now we are in a position to deal with real magic!
Most languages, including Scheme, are organized around the notion

of an expression. An expression has a value that it “returns.” An
expression is made up of subexpressions, each of which has a value
that it returns to the bigger expression it is a part of. What is the
essential idea of an expression?

Consider the compound expression

(+ 1 (* 2 3) (/ 8 2))

Of course, this has the value 11. It is computed by evaluating the
operator and the operands, then applying the value of the operator
(the procedure) to the values of the operands (the arguments).

This process can be clarified by reformulating the computation in
continuation-passing style. Here we invent new operators **, //, and
++ to name the continuation-passing style multiplication, division, and
addition procedures:

(define (** m1 m2 continue)

  (continue (* m1 m2)))

(define (// n d continue)

  (continue (/ n d)))

(define (++ a1 a2 continue)

  (continue (+ a1 a2)))

These procedures differ from the usual *, /, and + in that they do not
return to their caller; rather they are defined to call their last argument
with the value computed. The argument that receives the value is
called the continuation procedure. We used continuation-passing style
in sections 4.2.2 and 5.4.2 and also in the unifier on page 188.

The computation of (+ 1 (* 2 3) (/ 8 2)) in continuation-
passing style looks like:

(** 2 3



    (lambda (the-product)            ; A

      (// 8 2

          (lambda (the-quotient)     ; B

            (++ 1 the-product the-quotient

                k)))))

where k is the final continuation procedure, which takes one
argument, which is the value 11 of the computation.26

In this example the procedure ** computes the product of 2 and 3
and calls its continuation procedure (the lambda expression labeled by
comment A) with 6. Thus, in the body of A, the-product is bound to 6.
In the body of A the procedure // computes the quotient of 8 and 2
and passes the resulting 4 to the procedure labeled B, where the-
quotient is bound to 4. In the body of B the procedure ++ computes
the sum of 1, 6, and 4, and passes the resulting 11 to the continuation
procedure k.

In continuation-passing style there are no nested expressions that
return values. All results are passed to continuation procedures. Thus,
there is no need for a stack, because there is nobody waiting for the
value returned! Instead, we have linearized our expression tree in the
same way that a compiler must in order to compute the value of the
expression in a sequential machine.

Underlying continuations
The idea is that the slot in the expression that contains the
subexpression is just syntactic sugar for a procedure that accepts the
value of the subexpression for later use in continuing the evaluation of
the expression. This idea is very powerful, because the continuation
represents the entire future of the computation. This deeper
understanding of the meaning of an expression allows us to escape
from the single-valued expression style of programming, at the
considerable cost of complexity and syntactic nesting.

Whenever an expression is evaluated, a continuation exists that
expects the result of the expression. If the expression is evaluated at
top level, for example, the continuation will take the result, print it on
the screen, prompt for the next input, evaluate it, and so on, forever.
Most of the time the continuation includes actions specified by user



code, as in a continuation that will take the result, multiply it by the
value stored in a local variable, add seven, and give the answer to the
top-level continuation to be printed. Normally these ubiquitous
continuations are hidden behind the scenes, and programmers don't
think much about them. Scheme provides the ability for a programmer
to get the underlying continuation of an expression. An underlying
continuation is a first-class object that can be passed as an argument,
returned as a value, and incorporated into a data structure. Most other
languages do not support the use of first-class continuations.
(Languages that do have them include SML, Ruby, and Smalltalk.)

Explicit underlying continuations are one of the most powerful (and
most dangerous) tools of a programmer. Continuations give the
programmer explicit control over time. A computation can be captured
and suspended at one moment and restored and continued at any
future time. This makes it possible to write coroutines (cooperative
multitasking), and with the addition of a timer interrupt mechanism
we get timesharing (preemptive multitasking). On the occasions that
you may need to deal explicitly with continuations, Scheme lets you do
so by creating an explicit procedure that is the current continuation.
But before we can take charge of this power we need a deeper
understanding of continuations.

A continuation is a captured control state of a computation.27 If a
continuation is invoked, the computation continues at the place
represented by the continuation. A continuation may represent the act
of returning a value of a subexpression to the evaluation of the
enclosing expression. The continuation is then a procedure that when
invoked returns its argument to the evaluation of the enclosing
expression as the value of the subexpression. A continuation can be
invoked multiple times, allowing a computation to be resumed at a
particular point with different values returned by the continuation. We
will see an example shortly.

Scheme provides call-with-current-continuation (abbreviated
call/cc), which gives access to the continuations that underly
expression structure. The argument to call/cc is a procedure that
gets the continuation of the call/cc expression as its argument.
Again: a continuation is a first-class procedure that takes one
argument—the value to be returned when the continuation is called.28



Here is a simple example:

(define foo)

(set! foo

  (+ 1

     (call/cc

        (lambda (k)

          ;; k is the continuation

          ;; of the call/cc expression.

          ;; so if we call k with 6

          ;; then foo will get the value 11

          (k (* 2 3))))

     (/ 8 2)))

foo

11

So call/cc calls its argument with the continuation of the call/cc.
Not very exciting yet! So far this is no different from the
straightforward evaluation of (+ 1 (* 2 3) (/ 8 2)).

But procedures in Scheme have indefinite extent. This is a game
changer. Let's save the continuation for reuse.

(define bar)

(define foo)

(set! foo

  (+ 1

     (call/cc

        (lambda (k)

          (set! bar k)

          (k (* 2 3))))

     (/ 8 2)))

foo

11

(bar -2)

foo

3

Wow, look what happened! We saved in bar the future of the
computation that ultimately gives a value to foo. When we called that



continuation with another value, the assignment of foo was redone,
resulting in a different value of foo.

5.5.1 Continuations as nonlocal exits
Consider the following simple example of a nonlocal exit continuation
(adapted from the Scheme report [109]):

(call/cc

 (lambda (exit)

   (for-each (lambda (x)

               (if (negative? x) (exit x)))

             ’(54 0 37 -3 245 -19))  ; **

   (exit #t)))

-3

Because Scheme's for-each procedure walks the list in left-to-right
order, the first negative element encountered is -3, which is
immediately returned. Had the list contained no negative numbers,
the result would have been #t (since the body of the outer lambda
expression is a sequence of two expressions, the for-each expression
followed by returning #t).

The use of call/cc might appear within some other expression, as
in the following definition. (Traditionally, a symbol bound to an
underlying continuation starts with the letter k.)

(define (first-negative list-of-numbers)

  (call/cc

   (lambda (k exit)

     (or (call/cc (lambda (k shortcut)

                    (for-each (lambda (n)

                                (cond ((not (number? n))

                                       (pp ‘(not-a-number: ,n))

                                       (k exit #f))

                                      ((negative? n)

                                       (k shortcut n))

                                      (else

                                       ’keep-looking)))

                              list-of-numbers)

                    #f))

         ’no-negatives-found))))

This behaves as follows:



(first-negative ’(54 0 37 -3 245 -19))

-3

(first-negative ’(54 0 37 3 245 19))

no-negatives-found

(first-negative ’(54 0 37 no 245 -19))

(not-a-number: no)

#f

This demonstrates nested continuations, where the outermost k exit
continuation exits the entire call to first-negative while the inner k
shortcut continuation exits only to the enclosing disjunction, then
continues from there.

In short, if a continuation captured by call/cc is ever invoked with
some value, then the computation will continue by returning that
value as the value of the call to call/cc that captured it and resuming
execution normally from there.



Exercise 5.21: Nonlocal exits
This exercise is to be done in the native Scheme, where it will be easier
to debug and instrument than in our embedded interpreter. There is a
good implementation of call/cc in the native Scheme.

a. Define a simple procedure, snark-hunt,29 that takes a tree as its
argument and recursively descends the tree looking for the symbol
snark at any leaf. It should immediately stop searching and return
#t if one is found; #f otherwise. Use call/cc. For example:

(snark-hunt ’(((a b c) d (e f)) g (((snark . "oops") h) (i . 

j))))

  #t

Note that the input to snark-hunt may not be composed solely of
proper lists.

b. How might you verify that snark-hunt exits immediately rather
than silently returning through multiple return levels? Define a
new procedure, snark-hunt/instrumented, to demonstrate this.

Hint: Setting an exit status flag, then signaling an error on wayward
return paths might work if placed carefully, but simply tracing via pp
may be easier. Any quick and dirty hack that works will do. The goal
here is to build your intuition about continuations, not to ship
product-quality code. Briefly explain your strategy.

5.5.2 Nonlocal transfer of control
The preceding was somewhat simplistic, because the continuations
captured were used only for nonlocal exits. But continuations are more
powerful than that: they can be reentered once invoked. The following
example illustrates the idea:30

(define the-continuation #f)

(define (test)

  (let ((i 0))

    ;; The argument to call/cc assigns the



    ;; continuation produced by call/cc to the

    ;; global variable the-continuation.

    (call/cc (lambda (k) (set! the-continuation k)))

    ;; When the-continuation is called, execution

    ;; resumes here.

    (set! i (+ i 1))

    i))

The behavior is perhaps surprising. The procedure test creates a local
variable i initialized to 0. It also creates a continuation representing
the control state of returning from the call/cc expression in the body
of the let expression and stores that state in the global variable the-
continuation. It then increments i and returns i's new value: 1.

(test)

1

When the-continuation is called, the call/cc returns to the body of
the let expression. Execution proceeds to increment i and return its
new value. The continuation can be reused to increment i again and
return its new value.

(the-continuation ’OK)

2

(the-continuation ’OK)

3

(The argument OK is the value of the call/cc; it is ignored by the let
body.)

We save the continuation in another-continuation, so we can
make a new one to be stored in the-continuation by executing test
again. The call to test creates another instance of i, which is
initialized to 0.

(define another-continuation the-continuation)

(test)

1

This new continuation is independent of the one we saved in another-
continuation.

(the-continuation ’OK)



2

(another-continuation ’OK) ; uses the saved continuation

4

Now consider the following slightly more interesting scenario:

(define the-continuation #f)

(define sum #f)

(begin

  (set! sum

        (+ 2 (call/cc

              (lambda (k)

                (set! the-continuation k)

                (k 3)))))

  ’ok)

ok

sum

5

(the-continuation 4)

ok

sum

6

(the-continuation 5)

ok

sum

7

Note carefully how reentering this captured continuation, by calling
the-continuation, returns control to the point before the addition
and, therefore, before assigning variable sum and returning the symbol
ok. This is why invoking it always returns the symbol ok. However, sum
is assigned the sum of 2 and the argument we supplied to the-
continuation. So when we ask for the value of sum we get that new
sum. This demonstrates how to use a captured continuation to
proceed from intermediate return points. We will see how this
mechanism can be used for backtracking in section 5.5.3.



5.5.3 From continuations to amb
It turns out that almost anything we want to do, including
implementing amb, can be done with just the Scheme native call/cc;
let's see how to do that.

Indeed, continuations are a natural mechanism for supporting
backtracking. A choice can be made, and if that choice turns out to be
inappropriate, an alternative choice can be made and its consequences
worked out. (Wouldn't we like real life to have this feature!) In our
square-root example, the square-root program should return the amb
of both square roots, where amb is the operator that chooses and
returns one of them, with the option to provide the other if the first is
rejected. The receiver can then just proceed to use the given solution;
but if at some point the receiver finds that its computation does not
meet some constraint, it can fail, causing the amb operator to revise
its choice and return with the new choice through its continuation. In
essence, the continuation allows the generator of choices to be written
as a coroutine that interacts with the receiver/tester of the choices.

The heart of the backtracker is amb-list, which takes a sequence of
sibling thunks, each representing an alternative value for the amb
expression. The thunks are produced by an amb macro, which
syntactically transforms amb expressions into amb-list expressions,
as follows:

(amb e1 ... en) ==>

  (amb-list (list (lambda () e1) ... (lambda () en)))

The amb macro (written in portable syntax-rules form) is:

(define-syntax amb

  (syntax-rules ()

    ((amb exp ...)

     (amb-list (list (lambda () exp) ...)))))

For example:

(pp (syntax ’(amb a b c) user-initial-environment))

(amb-list (list (lambda () a) (lambda () b) (lambda () c)))

The search maintains a search schedule, an agenda of thunks that
can be called when it is necessary for an amb expression to return with



a new alternative value. The procedure amb-list first adds the thunks
for its alternative values to the search schedule and then yields control
to the first pending thunk on the schedule. If there are no alternatives
(the expression was just (amb)) then the amb-list yields control
without adding anything to the search schedule and increments a
global counter for auditing the search.

(define (amb-list alternatives)

  (if (null? alternatives)

      (set! *number-of-calls-to-fail*

            (+ *number-of-calls-to-fail* 1)))

  (call/cc

   (lambda (k)

     ((add-to-search-schedule)

      (map (lambda (alternative)

             (lambda ()

               (within-continuation k alternative)))

           alternatives))

     (yield))))

For a particular amb expression the thunks for the alternatives are
constructed so as to return from that amb expression, using the
continuation, k, captured at the entrance to their enclosing amb-
list.31

The way to yield control is to retrieve a thunk specifying an
alternative, if any, from the search schedule and execute it. The search
schedule is both a stack and a queue; we will see why shortly.

(define (yield)

  (if (deque-empty? (*search-schedule*))

      ((*top-level*) ’no-more-alternatives)

      ((pop! (*search-schedule*)))))

You may be puzzled by the fact that we call *top-level* and add-
to-search-schedule to get the procedures that do the work. We also
call *search-schedule* to get the search schedule object. The reason
for this indirection is that these are Scheme parameter objects (see
page 394). We have defined them this way because we will be
dynamically binding them to different values, as will be shown shortly.
We initialize the *search-schedule* to be empty:

(define *search-schedule*



  (make-parameter (empty-search-schedule)))

The magic is the call/cc in amb-list. The amb-list (and thus the
amb) executes the yield. The continuation of this call/cc, and thus of
this amb, is put onto the search schedule for each alternative of this
amb. When an alternative popped from the search schedule is
executed, its value is returned by whatever amb expression put that
alternative into the search schedule.

By making the search schedule both a stack and a queue, we can
implement both depth-first and breadth-first search, because they
differ only in the order of the schedule. This is done by dynamically
binding the add-to-search-schedule parameter to the ordering
desired, as shown below.

The default is depth first:

(define add-to-search-schedule

  (make-parameter add-to-depth-first-search-schedule))

The following two procedures can be used to control the search
order in the execution of a thunk that encapsulates a problem to be
solved, by dynamically binding add-to-search-schedule. For an
example of their use, see exercise 5.22 on page 293.

(define (with-depth-first-schedule problem-thunk)

  (call/cc

   (lambda (k)

     (parameterize ((add-to-search-schedule

                     add-to-depth-first-search-schedule)

                    (*search-schedule*

                     (empty-search-schedule))

                    (*top-level* k))

       (problem-thunk)))))

(define (with-breadth-first-schedule problem-thunk)

  (call/cc

   (lambda (k)

     (parameterize ((add-to-search-schedule

                     add-to-breadth-first-search-schedule)

                    (*search-schedule*

                     (empty-search-schedule))

                    (*top-level* k))

       (problem-thunk)))))



These procedures also locally reinitialize the *search-schedule* and
the *top-level* by dynamically binding them, providing control in
extent rather than scope. If yield finds no more alternatives it can
cause this search to terminate and return the value no-more-
alternatives to the caller of with-...-first-schedule. For
example:

(define search-order-demo

  (lambda ()

    (let ((x (amb 1 2)))

      (pp (list x))

      (let ((y (amb ’a ’b)))

        (pp (list x y))))

    (amb)))

(with-depth-first-schedule search-order-demo)

(1)

(1 a)

(1 b)

(2)

(2 a)

(2 b)

no-more-alternatives

(with-breadth-first-schedule search-order-demo)

(1)

(2)

(1 a)

(1 b)

(2 a)

(2 b)

no-more-alternatives

The orderings are implemented in terms of the low-level stack and
queue mutators. For depth first the alternatives are put onto the front
of the schedule, and for breadth first they are put onto the end of the
schedule. In both cases they appear on the schedule in the order in
which they were supplied to amb.

(define (add-to-depth-first-search-schedule alternatives)

  (for-each (lambda (alternative)

              (push! (*search-schedule*) alternative))

            (reverse alternatives)))

(define (add-to-breadth-first-search-schedule alternatives)



  (for-each (lambda (alternative)

              (add-to-end! (*search-schedule*) alternative))

            alternatives))

The parameter *top-level* is initialized so that when no
alternatives are found, the system continues in the read-eval-print
loop with the given result. (In the code above, yield passes the
symbol no-more-alternatives to the top level.) Note that with-...-
first-schedule rebinds *top-level*.

(define *top-level*

  (make-parameter

    (lambda (result)

      (abort->nearest

       (cmdl-message/active

        (lambda (port)

          (fresh-line port)

          (display "; " port)

          (write result port)))))))

To start everything up we also need:

(define (init-amb)

  (reset-deque! (*search-schedule*))

  (set! *number-of-calls-to-fail* 0)

  'done)

And finally, almost every program using amb will need require:

(define (require p)

  (if (not p) (amb) ’ok))

That is all there is to it! It is amazing what one can do with call/cc.
So we do not need to make an embedded system to implement amb (as
we did in section 5.4.2), if we have call/cc in our native environment.

Other ways to try alternatives
If there are multiple possible ways to solve a subproblem, and only
some of them are appropriate for solving the larger problem,
sequentially trying them as in generate-and-test is only one way to
proceed. For example, if some of the choices lead to very long (perhaps
infinite) computations in the tester while others may succeed or fail



quickly, it is appropriate to allocate each choice to a thread that may
run concurrently. This requires a way for threads to communicate and
perhaps for a successful thread to kill its siblings. All of this can be
arranged with continuations, with the thread-to-thread
communications organized around transactions.



Exercise 5.22: Breadth versus depth
Recall the dumb way to find Pythagorean triples (on page 272). We
instrument the searcher with a counter of the number of triples tried:

(define (a-pythagorean-triple-between low high)

  (let ((i (an-integer-between low high)))

    (let ((j (an-integer-between i high)))

      (let ((k (an-integer-between j high)))

        (set! triples-tested (+ triples-tested 1))

        (require (= (+ (* i i) (* j j))

                    (* k k)))

        (list i j k)))))

(define triples-tested 0)

Consider the following experiment. First we try breadth-first
search:

(begin (init-amb)       ; to reset failure counter

       (set! triples-tested 0)

       (with-breadth-first-schedule

        (lambda ()

          (pp (a-pythagorean-triple-between 10 20)))))

(12 16 20)

triples-tested

246

*number-of-calls-to-fail*

282

And then we try depth-first search:

(begin (init-amb)

    (set! triples-tested 0)

    (with-depth-first-schedule

    (lambda ()

      (pp (a-pythagorean-triple-between 10 20)))))

(12 16 20)

triples-tested

156



*number-of-calls-to-fail*

182

a. Explain the difference in triples-tested between depth-first
and breadth-first search (in rough terms, not the exact counts).

b. Explain the difference between the number of triples tested and
the *number-of-calls-to-fail*. Where are the extra failures
coming from?

c. Considering that the breadth-first search does more work, why is
the following a-pythagorean-triple-from search not usable
under the depth-first search strategy, although it works fine under
the breadth-first strategy?

(define (a-pythagorean-triple-from low)

  (let ((i (an-integer-from low)))

    (let ((j (an-integer-from i)))

      (let ((k (an-integer-from j)))

        (require (= (+ (* i i) (* j j)) (* k k)))

        (list i j k)))))

(define (an-integer-from low)

  (amb low (an-integer-from (+ low 1))))

(with-depth-first-schedule

  (lambda ()

    (pp (a-pythagorean-triple-from 10))))



Exercise 5.23: Less deterministic nondeterminism
Eva Lu Ator points out that our amb implementation is not as
nondeterministic as one might sometimes like. Specifically, given a list
of alternatives in an amb form, we always choose the leftmost
alternative first, then the second leftmost, and so on, in left-to-right
order.

She suggests that one might wish to override this choice, say, by
going from right to left, or even in random order. Specifically, she
would like something like:

(with-left-to-right-ordering problem-thunk)

(with-right-to-left-ordering problem-thunk)

(with-random-ordering problem-thunk)

She's quick to point out that this choice of ordering is independent of
the search order (depth-first, breadth-first, or other).

a. Under what circumstances might you want an unordered
(random) amb? Craft a specific short example to use as a test case in
part b.

b. Implement these three choice orders and give an example use of
each. For simplicity and uniformity, model your code after that for
with-depth-first-schedule, add-to-depth-first-search-
schedule, etc. Hint: Feel free to use Scheme's built-in random
procedure.



Exercise 5.24: Nesting strategies
We intended that the breadth-first and depth-first search strategies
could be arbitrarily nested within searches. Does the nesting of depth-
first and breadth-first scheduling work correctly as currently
implemented? Specifically, design an experiment that exposes the bug
(if there is one) or that demonstrates anecdotally that it does work
correctly (if it does). Explain your rationale.

This involves crafting experiments that distinguish between depth-
first and breadth-first search strategies, then composing them in
interesting ways to demonstrate local control over nested searches.

Identify a natural class of problems for which this flexibility is
useful— not just hacked together to prove a point.



Exercise 5.25: Undoable assignment
In the embedded interpreter version of amb in section 5.4.2 we
showed how to use two kinds of assignment: the usual permanent
assignment, indicated by set!, and the undoable assignment, indicated
by maybe-set!, which gets undone by backtracking. We can
implement a general wrapper for undoable effects in the native-code
implementation of this section:

(define (effect-wrapper doer undoer)

  (force-next

   (lambda () (undoer) (yield)))

  (doer))

(define (force-next thunk)

  (push! (*search-schedule*) thunk))

And we can then implement maybe-set! as a macro:

(define-syntax maybe-set!

  (syntax-rules ()

    ((maybe-set! var val)

     (let ((old-val var))

       (effect-wrapper

        (lambda ()

          (set! var val))

        (lambda ()

          (set! var old-val)))))))

Unfortunately, this makes sense only for depth-first search; it makes
no sense for breadth-first search. Explain why. Is this fixable?



Exercise 5.26: Search control in the embedded system
How could we change the embedded system of section 5.4.2, with
analysis to combinators that have success and failure continuations, to
enable both depth-first search (as it is now) and breadth-first search?
Explain your strategy. Make a new implementation that incorporates
this ability to control the search order. Note: This is a rather large
transformation.



5.6 Power and responsibility

In this chapter we have seen that we have great power from the
Church-Turing universality of computation. We can never complain:
“I cannot express this in the language I must use.” If we know the
tricks of interpretation and compilation we can always escape from the
confines of any language because it is always possible to build an
appropriate domain-specific language for the problem at hand. The
exposition here uses Scheme as the underlying language and builds
powerful Lisp-based languages on top of Scheme. The reason we use
Lisp syntax here is because it greatly simplifies the exposition of these
ideas. (See exercise 5.7 on infix notations. If we had to do this in a
language with a complicated syntax the exposition would be many
times longer and more tedious.) But the power of interpretation is
available in any Turing-universal language.

It is important for future flexibility that the languages we build be
simple and general. They must have very few mechanisms: primitives,
means of combination, and means of abstraction. We want to be able
to extend them as needed and to be able to mix and match the parts of
programs. And, most important, when we have multiple languages,
each of which is appropriate for some part of a problem, there must be
good ways for those languages to interoperate.

With great power comes even greater responsibility. Every time we
create a language we must also document it so that it can be taught to
others. The programs we write today will be read and modified by
others in the future. (Indeed, even when we read next year what we
wrote last year, we will be very different and we will not remember the
details of what we did.) So it is important that we use this power very
sparingly, and that when we do so we document the result very
carefully. Otherwise we will be leaving an incomprehensible mess for
the next programmer (or for ourselves!) to clean up and rewrite. Don't
participate in the creation of a “Tower of Babel.”

The systems that derive from UNIX show both the good and the bad
sides of this issue. The commands all have their own languages. If you
know about awk and sed and grep you know that each has its own



language, including the really ugly and badly defined regular-
expression language we discussed in section 2.2. Certainly each of
those languages helped make the immediate problems easier to solve.
But they do not have a consistent underlying idea that makes them
easy to learn and understand. Just think about how the quotation
conventions of the shell interact with the quotation conventions of
grep and you will appreciate this point. To become a UNIX guru you
have to learn lots of nasty special-case stuff. On the other hand, UNIX
itself has a wonderfully simple and elegant way to glue stuff together:
streams. Each of the basic UNIX utilities takes input from streams and
puts out streams. They can be connected by piping output streams to
input streams. This lesson is very worth contemplating.

 

1 But because our eval is a generic procedure, the set of symbols that
are defined by eval may be changed easily and even dynamically.

2 Our interpreter's implementation is made simpler by the use of
Scheme as the implementation language. We inherit the Scheme
reader, so our syntax is very simple; we inherit tail recursion, so we
don't need to pay special care when implementing procedure calls;
and we use Scheme procedures as primitives. If we were to choose a
different implementation language, for example C, we would have
many more issues to contend with. Nevertheless, it is possible to
build this kind of interpreter in any language.

3 The use of the g: prefix in g:apply and other names serves to
identify those names as specific to this “generic” interpreter. In
later sections we introduce different versions of the interpreter,
each of which has its own prefix.

4 Reals are usually represented in the computer as floating-point
numbers. The parts of a Scheme complex number may be integers
or rational fractions, as well as reals.

5 The understanding of quotation and its relationship to evaluation
has deep consequences in analytic philosophy. One good exposition



of this is in the 1982 PhD thesis of Brian Cantwell Smith [112].

6 A symbol is an atomic object that is named by a string of characters.
What makes a symbol interesting is that it is unique: any two
instances of a symbol with the same character-string name may be
presumed to be identical (they are eq?).

7 Many of the Scheme primitives found this way will work, such as car
or +. However, primitives that take procedures as arguments, such
as map or filter, will not accept nonprimitive procedures (i.e.,
those created by this interpreter from lambda expressions). This is
addressed in exercise 5.5 on page 249.

8 The real problem with macros is that they can introduce bindings
that can inadvertently conflict with existing bindings, making them
referentially opaque. There are several attacks on the referential-
opacity problem, leading to the development of Scheme hygienic
macro systems. See [73, 74, 8, 31]. Also, drastically modifying a
language by introducing special forms makes it harder for a reader
to understand a program—the reader must learn the new special
forms before reading the program that uses them.

9 MIT/GNU Scheme allows a more general syntax for definitions, with
recursive expansion of the cadr of the define form (see page 383).
We do not do this here.

10 We have made a decision here that limits future extension. The fact
that we require the procedure parameters to be a list of the same
length as the list of operands means that we cannot extend this
g:apply handler to allow procedures with optional or rest
parameters. So we could not define the traditional Lisp + that takes
an unspecified number of arguments and adds them up! But see
exercise 5.2.

11 In Scheme, a parameter that takes all the arguments after the
explicitly declared ones is called a rest parameter. If there are
explicitly declared parameters we can use an improper list (a chain
of pairs in which the last cdr is not the empty list) as our parameter
list. For example (lambda (a b . c) ...) is a procedure that



takes at least two arguments, which will be bound to a and b; any
additional arguments supplied (after the first two) are made into a
list that is the value of c. If there are no explicitly declared
parameters and just a rest parameter we use a single symbol to be
the name of the rest parameter. For example, in Scheme we can
write (lambda xs ...) to define a procedure that takes any
number of arguments and binds the parameter xs to be the list of
arguments.

12 Such an infix parser can be found on the website for this book.

13 You may notice that this definition of unless differs from that used
in many Lisp languages, including standard Scheme [109] and
Emacs Lisp.

14 Common practice uses the term “lazy evaluation” to mean that the
argument's evaluation is postponed and that the result is
memoized. Here we separate those ideas and use lazy to mean just
postponed.

15 In the original implementations of by-name parameters in Algol-60
these combinations of expression and environment were called
thunks. Because Scheme programs commonly use procedures with
no formal parameters to package an expression to be evaluated
later in some other environment, we also call such nullary
procedures used in this way thunks.

16 The procedure advance-memo! also drops the pointer from the
postponed object to the environment for its evaluation, allowing
that environment to be garbage-collected if there are no other
pointers to it.

17 An ancient but important paper by Dan Friedman and David Wise,
entitled “Cons should not evaluate its arguments”[40], showed how
lazy functional programming can be powerful, but is easily obtained
using kons rather than cons.

18 Scheme [109] provides delay and force for implementing streams.
For more information about streams see SICP [1] and SRFI-41 [13].



19 This evaluator differs significantly from the previous ones, so as
mentioned in footnote 3 on page 236, we use a new prefix (x:, for
“eXecution procedure”) to identify analogous procedures.

20 In Lisp (and so in Scheme) the extraction of the text of the
quotation is simple—it is just a cadr—but our intent is to be general
enough to accommodate any language syntax. In most languages
the extraction of the text of the quotation is much harder.

21 In analyze-begin the reduce-right procedure will never use the
#f argument because the #f is accessed only if the list of
expressions is empty. But that would signal the error Empty
sequence before the reduction started.

22 Erik Sandewall's survey [107] of systems that support tools for
“nonmonotonic” reasoning gives more context than we can provide
here.

23 In this evaluator we use the a: prefix (for amb) to distinguish
analogous procedures, as explained in footnote 19 on page 260.

24 Our implementation of amb is not quite the idea envisioned by
McCarthy. His amb is “prescient” in that it will converge to a value
even if one of the alternatives diverges. Since our evaluator does a
left-to-right, depth-first search of the alternatives, if e is an
expression that diverges (computes infinitely or signals an error),
our (amb e 5) diverges; but McCarthy's amb would return 5. This is
explained beautifully by William Clinger [21].

25 These timings are with the embedded exploratory-behavior
interpreter itself interpreted by the underlying Scheme system. If
we use the Scheme compiler to compile the embedded interpreter
we get a factor of about 30 speed improvement.

26 The idea of continuation-passing style was introduced by computer
language theorists to clarify the semantics of computer languages.
For a complete history of this idea see [103]. In Scheme the
continuations underlying subexpressions are exposed as first-class
procedures [120, 61, 109].



27 This control state is not to be confused with the full state of a
system. The full state is all the information required, along with the
program, to determine the future of a computation. It includes all of
the current values of mutable variables and data. The continuation
does not capture the current values of mutable variables and data.

28 But note that the Scheme report [109] allows continuations to take
any number of arguments.

29 See “The Hunting of the Snark,” by Lewis Carroll, 1876.

30 This example is adapted from Wikipedia [25].

31 The use of the MIT/GNU Scheme extension within-continuation
procedure, which here is approximately equivalent to the call (k
(alternative)), prevents the capture of pieces of the control stack
that are unnecessary for continuing the computation correctly.



6 
Layering

In section 1.1 we alluded to the idea that programming could learn
from the practice of architecture. A programmer might start with an
executable skeleton plan (a parti ) to help try out an idea. When the
parti looks good the programmer could elaborate it with more
information.

For example, declared implementation types may enable the
compilation of efficient code and inhibit the occurrence of type errors.
Declared dimensions and units may be added to prevent some bugs
and support documentation. Assertions of predicates can help with the
localization of errors that occur at run time and they could support the
automatic or manual construction of proofs of “correctness.”
Declarations of how much precision is needed for some numerical
quantities and operations can give clarity to numerical analysis
problems. Suggestions of alternative implementations can enable
useful degeneracy in an implementation. We can track the provenance
of a result by carrying dependencies.

But the usual way of adding these important and powerful features
to the text of a program turns the program text into a tangled mess. To
continue with the architecture analogy, it does not separate the served
spaces from the servant spaces. The separation of the “essential”
features of a program (the code that defines its behavior) from the
“accidental” ones (e.g., type information for a compiler or code for
logging) has been an important issue. Aspect-oriented programming
[67] was an attempt to address part of this problem, by explicitly
identifying “cross-cutting concerns” such as logging. Layering is
another way to effect the separation. The ability to annotate any piece
of data or code with other data or code is a crucial mechanism in
building flexible systems. The decoration of a value is a generalization
of the tagging used to support extensible generic operations. Here we



introduce the idea of layered programming. Both the data and the
procedures that process it will be made up of multiple layers that
enable additive annotation without introducing clutter.



6.1 Using layers

Layers give us the ability to sketch out a computation and then
elaborate that computation with metadata that is processed along with
the computation. Let's consider some annotations that we think may
be valuable in many situations. For example, suppose we are
interested in using Newton's force law for gravity:

(define (F m1 m2 r)

  (/ (* G m1 m2) (square r)))

This is a simple numerical calculation, but we can elaborate it to carry
support information and units.

We find Newton's constant G by looking up a recent measurement
published by NIST:

(define G

  (layered-datum 6.67408e-11

    unit-layer (unit 'meter 3 ’kilogram -1 'second -2)

    support-layer (support-set ’CODATA-2018)))

Here we show the numerical value of the measurement, the units of
that measurement (m3/(kg s2)), and the source of the data (its
support). We could extend this to also carry the uncertainty in the
measurement as a range in another layer, but we won't do that here.

We can also find the mass of the Earth, the mass of the Moon, and
the distance to the Moon (semimajor axis) from other sources:

(define M-Earth

  (layered-datum 5.9722e24

                 unit-layer (unit ’kilogram 1)

                 support-layer

                 (support-set ’Astronomical-Almanac-2016)))

(define M-Moon

  (layered-datum 7.342e22

                 unit-layer (unit ’kilogram 1)

                 support-layer

                 (support-set ’NASA-2006)))



(define a-Moon

  (layered-datum 384399e3

                 unit-layer (unit 'meter 1)

                 support-layer

                 (support-set ’Wieczorek-2006)))

Now we can ask the question, “What is the gravitational force of
attraction between the Earth and the Moon at that distance?” and we
will get the answer:

(pp (F M-earth M-Moon a-moon))

#[layered-datum 1.9805035857209e20]

(base-layer 1.9805035857209e20)

(unit-layer (unit kilogram 1 meter 1 second -2))

(support-layer

 (support-set Wieczorek-2006

              NASA-2006

              Astronomical-Almanac-2016

              CODATA-2018))

The result gives the numerical value, the units of that result, and the
sources that the result depended upon.



6.2 Implemention of layering

There are two parts to layering. The first is that it must be possible to
create a datum that contains multiple layers of information. In our
example, we used layered-datum to do this. The second part is that
we need to be able to enhance a procedure so that it can process each
layer (somewhat) independently. A procedure enhanced in this way is
called a layered procedure.

We also need a way to assign names to layers. Every layer must
have a name, so that the layer in a datum can be specified. The name is
also used by a layered procedure to connect the processing for that
layer to the corresponding layers in the incoming data. We have
written our example to use variables to refer to layer names, as in
unit-layer, which is bound to the name for the unit layer. This
makes the user interface independent of the details of how a layer
name is specified; this will turn out to be useful.

Another aspect of layer naming is that there must be a
distinguished base layer, which represents the underlying
computation being performed. In our example using layered-datum,
the base layer's value is distinguished by being the first argument and
by not having an associated name.

Layered data can be built from simple data structures. We can use
any convenient data structure that can associate a layer name with a
value and that permits many such associations. A special name can be
used to identify the base layer, making the data structure simple and
uniform.

Building layered procedures is more complicated, because the
processing for most layers will need some information from the
computation in the base layer. For example, suppose we are
multiplying two numbers that carry support information. Normally,
the support of the result is the union of the supports of the arguments.
But suppose one argument has a base-layer value of zero; then the
support of the result is the support of the zero, and the support of the
other argument is irrelevant.

The base layer must not depend on any non-base layer because that



violates the idea of the base layer: that it is an independent
computation that the other layers enhance. And a non-base layer
should not depend on another non-base layer. A non-base layer
generally shouldn't share information with another non-base layer
since its behavior would be different depending on the presence or
absence of the other layer. This would be inconsistent with our general
approach of building additive programs.

So building a layered procedure involves a balance between sharing
information from the base layer to the non-base layers and isolating
layers in most other cases. We will address this in the next sections as
we explore the details of implementing layering.

6.2.1 Layered data
A layered data item is a base value annotated with extra information
about that value. The annotation is an association of layer names with
their values. For example, the number 2 may be the base value in
many data items: if we are dealing in potatoes there may be a 2-dollar
price tag on a 2-pound bag of potatoes. Each of these instances of the
number 2 must be a distinct data item, with different values (dollars or
pounds) for the units layer. There may be other layers as well: the 2-
dollar price may have information saying how it was derived from the
price paid to the farmer and the cost of transportation and processing.

To address this issue we introduce the layered datum. A layered
datum is represented as a bundle that contains an association of layers
and their values. So a 2-pound quantity of potatoes and a 2-dollar
price for potatoes will be separate layered data items:

(define (make-layered-datum base-value alist)

  (if (null? alist)

      base-value

      (let ((alist

             (cons (cons base-layer base-value)

                   alist)))

        (define (has-layer? layer)

          (and (assv layer alist) #t))

        (define (get-layer-value layer)

          (cdr (assv layer alist)))

        (define (annotation-layers)

          (map car (cdr alist)))

        (bundle layered-datum?



                has-layer? get-layer-value

                annotation-layers))))

The associations between layers and their values are represented as an
association list, or alist—a list of key–value pairs.

For convenience, we provide layered-datum, which takes its layer
arguments in property-list form (alternating layer and value, as in the
examples on page 300) and calls make-layered-datum with the
corresponding alist.

(define (layered-datum base-value . plist)

  (make-layered-datum base-value (plist->alist plist)))

This design provides great flexibility. There may be many different
kinds of layered data, and for each there is no a priori commitment to
any particular layer or number of layers. The only common feature is
that each layered datum has a distinguished layer, the base-layer,
which contains the object that all the other layer values are
annotations on.

Each layer is represented by a bundle that embodies the specifics of
that layer. The simplest is the base layer:

(define base-layer 

  (let ()

    (define (get-name) ’base)

    (define (has-value? object) #t)

    (define (get-value object)

      (if (layered-datum? object)

          (object ’get-layer-value base-layer)

          object))

    (bundle layer? get-name has-value? get-value)))

This shows the primary operation of a layer: the get-value operation
that fetches the layer value, if present, or returns a default. In the case
of the base layer, the default is the object itself.

The annotation layers have a little more complexity. In addition to
the above, they also manage a set of named procedures that will be
explored when we look at layered procedures. The make-annotation-
layer procedure provides the common infrastructure used by all
annotation layers; it calls its constructor argument to supply the
layer-specific parts.



(define (make-annotation-layer name constructor)

  (define (get-name) name)

  (define (has-value? object)

    (and (layered-datum? object)

         (object ’has-layer? layer)))

  (define (get-value object)

    (if (has-value? object)

        (object ’get-layer-value layer)

        (layer ’get-default-value)))

  (define layer

    (constructor get-name has-value? get-value))
 layer)

We use make-annotation-layer to construct the units layer:

(define unit-layer

  (make-annotation-layer ’unit

    (lambda (get-name has-value? get-value)

      (define (get-default-value)

        unit:none)

      (define (get-procedure name arity)

        See definition on page 308.)

      (bundle layer?

              get-name has-value? get-value

              get-default-value get-procedure))))

This implementation shows the rest of the layer structure: a provider
for the default value, and the procedure get-procedure that
implements this layer's support for layered procedures, which we will
examine in the next section (page 308).

As a convenience for a common use case, layer-accessor creates
an accessor procedure that is equivalent to calling a layer's get-value
delegate:

(define (layer-accessor layer)

  (lambda (object)

    (layer ’get-value object)))

(define base-layer-value

  (layer-accessor base-layer))

6.2.2 Layered procedures
Procedures are also data that can be layered. A layered procedure is
similar to a generic procedure, in which there are handlers for



different argument types. A layered procedure instead provides
implementations for separate layers in the incoming data, and
processes all of them to produce a layered result.1 For example, when
combining a numeric layer with a units layer, the procedure can
process the numeric parts of the arguments using its numeric layer,
and also process the units parts of the arguments using its units layer.

In the numerical example shown in section 6.1, the code F for
Newton's force represents the parti, the essential plan for the
computation to be performed. It operates on numbers; the units
annotate the numbers. The layered generic procedures that implement
the arithmetic operators, such as multiplication, have a base
component that operates on the numbers in the base layer and they
have other components, one for each layer that might annotate the
numerical base layer. The units layer is an annotation layer that gives
more information about the data and the computation, but is not
essential to the computation.

In a layered system the base layer must be able to compute without
reference to the other layers. But the annotation layers may need
access to the values that are in the base layer. If an annotation layer of
an argument is missing, the procedure's annotation layer may use a
default value or simply not run. In any case, the base layer always
runs.

To construct a layered procedure, we need a unique name and arity
for the procedure, and a base-procedure to implement the base
computation:

(define (make-layered-procedure name arity base-procedure)

  (let* ((metadata

          (make-layered-metadata name arity base-procedure))

         (procedure

          (layered-procedure-dispatcher metadata)))

    (set-layered-procedure-metadata! procedure metadata)

    procedure))

Information about the layered procedure is kept in metadata for that
procedure. The metadata also manages the handlers for the base layer
and the annotation layers.

The metadata for a layered procedure is implemented as a bundle.
It is created with the name of the layered procedure, its arity, and the



base-procedure (the handler for the base layer). The metadata
provides access to each of these. It also provides set-handler! for
assigning a handler for an annotation layer and get-handler for
retrieving the handler for an annotation layer.

Each annotation layer, for example the unit-layer, provides get-
procedure that when given a procedure name and arity returns the
appropriate handler for that procedure name and arity for that layer.
The get-handler provided by the layered metadata first checks if it
has a handler for that layer. If so it returns that handler; otherwise it
returns the result of the layer's get-procedure.

(define (make-layered-metadata name arity base-procedure)

  (let ((handlers (make-weak-alist-store eqv?)))

    (define (get-name) name) (define (get-arity) arity)

    (define (get-base-procedure) base-procedure)

    (define has? (handlers ’has?))

    (define get (handlers ’get))

    (define set-handler! (handlers ’put!))

    (define (get-handler layer)

      (if (has? layer)

          (get layer)

          (layer ’get-procedure name arity)))

    (bundle layered-metadata?

            get-name get-arity get-base-procedure

            get-handler set-handler!)))

The actual work of applying a layered procedure is done by layered-
procedure-dispatcher. The dispatcher must be able to access and
apply the base procedure and the annotation layer procedures that are
associated with the layered procedure. All of this information is
provided by the metadata.

(define (layered-procedure-dispatcher metadata)

  (let ((base-procedure (metadata ’get-base-procedure)))

    (define (the-layered-procedure . args)

      (let ((base-value

             (apply base-procedure

                    (map base-layer-value args)))

            (annotation-layers

             (apply lset-union eqv?

                    (map (lambda (arg)

                           (if (layered-datum? arg)

                               (arg ’annotation-layers)

                               ’()))



                         args))))

        (make-layered-datum base-value

          (filter-map        ; drops #f values

           (lambda (layer)

             (let ((handler (metadata ’get-handler layer)))

               (and handler

                    (cons layer

                          (apply handler base-value args)))))

           annotation-layers))))

    the-layered-procedure))

When called, a layered procedure first calls base-procedure on the
base-layer values of the arguments to get the base value. It also
determines which annotation layers are applicable by examining each
of the arguments; if there are no annotation layers that have handlers,
then the result is just the base-layer value, because make-layered-
datum (on page 303), will return the unannotated base value.
Otherwise, each applicable layer's handler is called to produce a value
for that layer. The layer-specific handler is given access to the
computed base-value and the arguments to the layered procedure; it
does not need any layer values other than its own and those of the base
layer. Generally, the result is a layered datum containing the base
value and the values of the applicable annotation layer handlers.

To see how this works in practice, let's look at the implementation
for the units layer (on page 304). The get-procedure handler of the
units layer (below) looks up the layer-specific procedure by name if the
layered procedure's name is an arithmetic operator, and then calls the
layer-specific procedure with the units from each argument. (There is
a special exception for expt, whose second argument is not decorated
with units—it is a number.) For other procedures, the units handling is
undefined, so get-procedure returns #f to indicate that.

(define (get-procedure name arity)

  (if (operator? name)

      (let ((procedure (unit-procedure name)))

        (case name

          ((expt)

           (lambda (base-value base power)

             (procedure (get-value base)

                        (base-layer-value power))))

          (else

           (lambda (base-value . args)



             (apply procedure (map get-value args))))))

      #f))

Notice that because get-procedure is an internal procedure of unit-
layer, it has access to the units layer get-value inherited from make-
annotation-layer (on page 304). We will see unit-procedure when
we talk about the units implementation in section 6.3.1.

Let's look at an example. Consider the simple procedure square
that squares its argument.

(define (square x) (* x x))

We make a layered version of our square procedure, giving the
numerical version to the base layer.

(define layered-square

  (make-layered-procedure 'square 1 square))

This layered squaring procedure behaves the same as the base version:

(layered-square 4)
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(layered-square 'm)

(* m m)

However, if we provide an argument with a units layer, both the base
layer and units layer will be processed separately and combined in the
output:

(pp (layered-square

     (layered-datum ’m

                    unit-layer (unit ’kilogram 1))))

#[layered-datum (* m m)]

(base-layer (* m m))

(unit-layer (unit kilogram 2))



6.3 Layered arithmetic

Now that we know how to make layered procedures, we can add layers
to an arithmetic. All that is required is to build an arithmetic with a
layered procedure for each operation supplied in the base arithmetic.
We start with a pleasant arithmetic

(define (generic-symbolic)

  (let ((g (make-generic-arithmetic

             make-simple-dispatch-store)))

    (add-to-generic-arithmetic! g numeric-arithmetic)

    (extend-generic-arithmetic! g function-extender)

    (extend-generic-arithmetic! g symbolic-extender)

    g))

and build an extender to handle the layers on that substrate:

(define generic-with-layers

  (let ((g (generic-symbolic)))

    (extend-generic-arithmetic! g layered-extender)

    g))

The layered extender has to do a bit of work. It makes a layered
extension arithmetic that operates on layered data. The domain
predicate of the layered extension arithmetic is layered-datum?. The
base predicate for the layered operations is just the domain predicate
of the underlying arithmetic, with the extra provision that it must
reject layered data items.2 The constants are the base constants, and
for each arithmetic operator the operation is a layered procedure
applicable if any argument is layered, with the base procedure
inherited from the underlying arithmetic.

(define (layered-extender base-arith)

  (let ((base-pred

         (conjoin (arithmetic-domain-predicate base-arith)

                  (complement layered-datum?))))

    (make-arithmetic (list ’layered

                           (arithmetic-name base-arith))

                     layered-datum?

                     (list base-arith)



      (lambda (name base-value)

        base-value)

      (lambda (operator base-operation)

        (make-operation operator

          (any-arg (operator-arity operator)

                   layered-datum?

                   base-pred)

          (make-layered-procedure operator

            (operator-arity operator)

            (operation-procedure base-operation)))))))

Nearly all of this is boilerplate, including leaving the constant objects
alone and requiring that at least one argument to an operation be
layered. The only interesting part is the final three lines, in which the
base arithmetic's operation procedure is wrapped in a layered
procedure. The operator is used as the name of the layered procedure,
so that each layer can provide special handling should that operation
need it.

6.3.1 Unit arithmetic
We need an arithmetic of units for the units annotation layer on an
arithmetic. A unit specification has named base units, and an
exponent for each base unit.3 In the units arithmetic, the product of
unit specifications is a new unit specification where the exponent of
each base unit is the sum of the exponents of the corresponding base
units in the arguments.

(unit:* (unit ’kilogram 1 ’meter 1 ’second -1)

        (unit ’second -1))

(unit kilogram 1 meter 1 second -2)

Here we assume that the base units are just named by symbols,
such as kilogram.

Representation of unit specifications
To make it easy to create a unit specification, we represent it externally
as a property list (with alternating keys and values) of base unit names
and exponents.

But internally, it is convenient to represent a unit specification as a



tagged alist; so we must convert a raw property list to the alist
representation, using plist->alist. We keep the alists sorted by the
base unit name. In this conversion we do some error checking. The
argument list to unit must be in the form of a property list. The
exponent associated with each base unit name must be an exact
rational number (usually an integer). It is an error if a named base
unit is duplicated. The sort by base unit names will signal an error if
the base unit name is not a symbol.

(define (unit . plist)

  (guarantee plist? plist ’unit)

  (let ((alist

         (sort (plist->alist plist)

               (lambda (p1 p2)

                 (symbol<? (car p1) (car p2))))))

    (if (sorted-alist-repeated-key? alist)

        (error "Base unit repeated" plist))

    (for-each (lambda (p)

               (guarantee exact-rational? (cdr p)))

              alist)

    (alist->unit alist)))

(define (sorted-alist-repeated-key? alist)

  (and (pair? alist)

       (pair? (cdr alist))

       (or (eq? (caar alist) (caadr alist))

           (sorted-alist-repeated-key? (cdr alist)))))

The procedure alist->unit just attaches a unique tag to an alist;
and unit->alist extracts the alist from a unit specification:

(define (alist->unit alist)

  (cons %unit-tag alist))

(define (unit->alist unit)

  (guarantee unit? unit ’unit->alist)

  (cdr unit))

Here, the value of %unit-tag is just a unique symbol that we use to
head a unit specification alist. To make the printed output of unit
specifications look like the property lists that we give to unit to make
a unit specification, we arrange that the Scheme printer prints unit
specifications in property list form. This magic arrangement (not
shown here) is triggered by the unit-tag symbol at the head of the list.



The predicate unit? is true if its argument is a legitimate unit
specification:

(define (unit? object)

  (and (pair? object)

       (eq? (car object) %unit-tag)

       (list? (cdr object))

       (every (lambda (elt)

                (and (pair? elt)

                     (symbol? (car elt))

                     (exact-rational? (cdr elt))))

              (cdr object))))

Unit arithmetic operations
We construct the unit arithmetic as a mapping between the operator
name and the operation that implements the required behavior. Pure
numbers, like π, are unitless. When a quantity with units is multiplied
by a unitless number, the result is the units of the quantity with units.
So the unit arithmetic needs a multiplicative identity for unitless
numbers—this is unit:none. The procedure simple-operation

combines the operator, the test for applicability, and the procedure
that implements the operation:

(define (unit-arithmetic)

  (make-arithmetic ’unit unit? ’()

    (lambda (name)

      (if (eq? name 'multiplicative-identity)

          unit:none

          (default-object)))

    (lambda (operator)

      (simple-operation operator

                        unit?

                        (unit-procedure operator)))))

We call unit-procedure to get the appropriate procedure for each
operator:

(define (unit-procedure operator)

  (case operator

    ((*) unit:*)

    ((/) unit:/)

    ((remainder) unit:remainder)

    ((expt) unit:expt)



    ((invert) unit:invert)

    ((square) unit:square)

    ((sqrt) unit:sqrt)

    ((atan) unit:atan)

    ((abs ceiling floor negate round truncate)

     unit:simple-unary-operation)

    ((+ - max min)

     unit:simple-binary-operation)

    ((acos asin cos exp log sin tan)

     unit:unitless-operation)

    ((angle imag-part magnitude make-polar make-rectangular

            real-part)

     ;; first approximation:

     unit:unitless-operation)

    (else

     (if (eq? ’boolean (operator-codomain operator))

         (if (n:= 1 (operator-arity operator))

             unit:unary-comparison

             unit:binary-comparison)

         unit:unitless-operation))))

For each case above we must provide the appropriate operation. For
example, to multiply two unit quantities we must add corresponding
exponents and elide any base unit that has zero exponent:

(define (unit:* u1 u2)

  (alist->unit

   (let loop ((u1 (unit->alist u1)) (u2 (unit->alist u2)))

     (if (and (pair? u1) (pair? u2))

         (let ((factor1 (car u1)) (factor2 (car u2)))

           (if (eq? (car factor1) (car factor2)) ; same unit

               (let ((n (n:+ (cdr factor1) (cdr factor2))))

                 (if (n:= 0 n)

                     (loop (cdr u1) (cdr u2))

                     (cons (cons (car factor1) n)

                           (loop (cdr u1) (cdr u2)))))

               (if (symbol<? (car factor1) (car factor2))

                   (cons factor1 (loop (cdr u1) u2))

                   (cons factor2 (loop u1 (cdr u2))))))

         (if (pair? u1) u1 u2)))))

Some operators, such as remainder, expt, invert, square, sqrt, and
atan, require special treatment. The rest of the operators fit into a few
simple classes. Simple unary operations, like negate, just propagate
the units of their argument to their result:



(define (unit:simple-unary-operation u)

  u)

But some, like the implementation of addition, check that they are not
“combining apples and oranges:”

(define (unit:simple-binary-operation u1 u2)

  (if (not (unit=? u1 u2))

      (error "incompatible units:" u1 u2))

  u1)



Exercise 6.1: Derived units
Although the unit computation given above is correct and reasonably
complete, it is not very nice to use. For example, the unit specification
for kinetic energy (as shown on page 316) is:

(unit kilogram 1 meter 2 second -2)

This is correct in terms of the International System of Units (SI) base
units {kilogram, meter, second}, but it would be much nicer if
expressed in terms of joules, the SI derived unit of energy:

(unit joule 1)

The full system of SI base units is {kilogram, meter, second,
ampere, kelvin, mole, candela}, and there is an approved set of derived
units. For example:

newton = kilogram·meter·second−2

joule = newton·meter

coulomb = ampere·second

watt = joule·second−1

volt = watt·ampere−1

ohm = volt·ampere−1

siemens = ohm−1

farad = coulomb·volt−1

weber = volt·second

henry = weber·ampere−1

hertz = second−1

tesla = weber·meter−2

pascal = newton·meter−2



a. Make a procedure that takes a unit description in terms of SI
base units and, if possible, makes a simpler description using
derived units.

b. The expression of a unit description in terms of the derived units
is not unique—there may be many such equivalent descriptions.
This is similar to a problem of algebraic simplification, but the
criterion of “simpler” is not obvious. Make a nice version that you
like and explain why you like it.

c. It is nice to be able to use the standard abbreviations and
multipliers for the units. For example, 1 mA is the nice way to write
0.001 A or 1/1000 ampere. Design and implement a simple
extensible system that allows the use of these notational
conveniences for both input and output. But remember that
“syntactic sugar causes cancer of the semicolon.”



6.4 Annotating values with dependencies

One kind of annotation that a programmer may want to deploy in
some parts of a program is the tracking of dependencies. Every piece
of data (or procedure) came from somewhere. Either it entered the
computation as a premise that can be labeled with its external
provenance, or it was created by combining other data. We can
provide primitive operations of the system with annotation layers that,
when processing data with justifications, can annotate the results with
appropriate justifications.

Justifications can be at differing levels of detail. The simplest kind
of justification is just a set of those premises that contributed to the
new data. A procedure such as addition can form a sum with a
justification that is just the union of the premises of the justifications
of the addends that were supplied. Multiplication is similar, but a zero
multiplicand is sufficient to force the product to be zero, so the
justifications of the other factors do not need to be included in the
justification of the zero product.

Such simple justifications can be computed and carried without
much more than a constant overhead, but they can be invaluable in
debugging complex processes and in the attribution of credit or blame
for outcomes of computations. Just this much is sufficient to support
dependency-directed backtracking. (See section 7.5.)

Externally supplied data can be annotated with a premise that
identifies its origin. More generally, any data value can be annotated
with a set of premises, which is called its support set. The support set
annotating a datum is usually referred to as its support. When a
support-aware procedure is applied to multiple arguments, it must
combine the support sets of the arguments to represent the support of
the result.

Managing support sets is a straightforward application of our
layered data mechanism. We add a support layer to our generic
arithmetic to handle support sets. It coexists with other layers, such as
the units layer. So this is an additive feature.

On page 309 we built an arithmetic that supports layered data and



procedures:

(define generic-with-layers

  (let ((g (generic-symbolic)))

    (extend-generic-arithmetic! g layered-extender)

    g))

(install-arithmetic! generic-with-layers)

We don't need to specify what layers are to be supported by layered-
extender, since it automatically uses the layers in each layered
procedure's arguments. So if, say, + is called with arguments that have
units, then the result will also have units. But if none of the arguments
have units, then neither does the result, and the unit addition
procedure is not invoked. Similarly, if the arguments have support,
then the result will have support. But if the arguments do not have
support, the result will not have support, and the support addition
procedure is not invoked.

For example, we can define the kinetic energy of a particle with
mass m and velocity v:

(define (KE m v)

  (* 1/2 m (square v)))

Now we can see the result of evaluating the kinetic energy on some
arguments:

(pp (KE (layered-datum ’m

                       unit-layer (unit ’kilogram 1)

                       support-layer (support-set ’cph))

        (layered-datum ’v

                       unit-layer (unit ’meter 1 ’second -1)

                       support-layer (support-set ’gjs))))

#[layered-datum (* (* 1/2 m) (square v))]

(base-layer (* (* 1/2 m) (square v)))

(unit-layer (unit kilogram 1 meter 2 second -2))

(support-layer (support-set gjs cph))

We supply each argument with annotations for the units layer and the
support layer. For the support layer we give a set of premises (the
support set). Here, each argument is supported by a single premise,
cph and gjs respectively. The value is a layered object with three
layers: the base generic arithmetic layer value is the appropriate



algebraic expression; the units are correct; and the support set is the
set of named premises that contributed to the value.

Here we accepted the definition of KE without supplying explicit
support for that procedure. More generally, we might want to add such
support. For example, we may want to say that KE is supported by a
premise KineticEnergy-classical. Then if we find a result of some
complex computation that seems wrong, we can find out which
procedures contributed to the wrong answer, as well as the numerical
or symbolic input values that were used. We will attack this problem in
exercise 6.2.

Not all premises that appear in the arguments to a computation
need to appear in a result. For example, if a factor contributing to a
product is zero, that is sufficient reason for the product to be zero,
independent of any other finite factors. This is illustrated by supplying
a zero mass:

(pp (KE (layered-datum 0

                       unit-layer (unit ’kilogram 1) support-

layer

                       (support-set ’jems))

        (layered-datum ’v

                       unit-layer (unit 'meter 1 'second -1)

                       support-layer (support-set ’gjs))))

#[layered-datum 0]

(base-layer 0)

(unit-layer (unit kilogram 1 meter 2 second -2))

(support-layer (support-set jems))

Here the support for the numeric value of the result being zero is just
the support supplied for the zero value for the mass.

6.4.1 The support layer
Now we will see how the support layer is implemented. It is somewhat
different from the units layer, because units can be combined without
any reference to the base layer, whereas the support layer needs to
look at the base layer for some operations.

The support layer is somewhat simpler than the units layer, because
all but three of the arithmetic operators use the default: the support
set of the result is the union of the support sets of the arguments.



(define support-layer

  (make-annotation-layer 'support

    (lambda (get-name has-value? get-value)

      (define (get-default-value)

        (support-set))

      (define (get-procedure name arity)

        (case name

          ((*) support:*)

          ((/) support:/)

          ((atan2) support:atan2)

          (else support:default-procedure)))

      (bundle layer?

              get-name has-value? get-value

              get-default-value get-procedure))))

(define support-layer-value

  (layer-accessor support-layer))

(define (support:default-procedure base-value . args)

  (apply support-set-union (map support-layer-value args)))

Multiplication is the first interesting case. The support layer needs
to look at the values of the base arithmetic arguments to determine the
computation of support. If either argument is zero, then the support
for the result is only the support for the zero argument.

(define (support:* base-value arg1 arg2)

  (let ((v1 (base-layer-value arg1))

        (v2 (base-layer-value arg2))

        (s1 (support-layer-value arg1))

        (s2 (support-layer-value arg2)))

    (if (exact-zero? v1)

        (if (exact-zero? v2)

            (if (< (length (support-set-elements s1))

                   (length (support-set-elements s2)))

                s1

                s2)   ;arbitrary

            s1)

        (if (exact-zero? v2)

            s2

            (support-set-union s1 s2)))))

Division (and arctangent, not shown) also has to examine the base
layer to deal with zero arguments. If the dividend is zero, that is
sufficient to support the result that the quotient is zero. The divisor
won't ever be zero because the base-layer computation will have



signaled an error and this code won't be run.

(define (support:/ base-value arg1 arg2)

  (let ((v1 (base-layer-value arg1))

        (s1 (support-layer-value arg1))

        (s2 (support-layer-value arg2)))

    (if (exact-zero? v1)

        s1

        (support-set-union s1 s2))))

These optimizations for * and / make sense only when we can prove
that an argument is really zero, not an unsimplified symbolic
expression. (But if an expression simplifies to exact zero we can use
that fact!)

(define (exact-zero? x)

  (and (n:number? x) (exact? x) (n:zero? x)))

The support-set abstraction is implemented as a list starting with
the symbol support-set

(define (%make-support-set elements)

  (cons ’support-set elements))

(define (support-set? object)

  (and (pair? object)

       (eq? ’support-set (car object))

       (list? (cdr object))))

(define (support-set-elements support-set)

  (cdr support-set))

along with a few extra utilities to complete the abstraction.

(define (make-support-set elements)

  (if (null? elements)

      %empty-support-set

      (%make-support-set (delete-duplicates elements))))

(define (support-set . elements)

  (if (null? elements)

      %empty-support-set

      (%make-support-set (delete-duplicates elements))))

(define %empty-support-set

  (%make-support-set ’()))



(define (support-set-empty? s)

  (null? (support-set-elements s)))

We need to be able to compute the union of support sets and adjoin
new elements to them. Since we chose to keep our elements in a list,
we can use the lset library from Scheme.4

(define (support-set-union . sets)

  (make-support-set

   (apply lset-union eqv?

          (map support-set-elements sets))))

(define (support-set-adjoin set . elts)

  (make-support-set

   (apply lset-adjoin eqv? (support-set-elements set) elts)))



Exercise 6.2: Procedural responsibility
The support layer based on arithmetic is extremely low level. Every
primitive arithmetic operation is support-aware, and there is no way
to bypass that work for common conditions. There needs to be a
means of abstraction. For example, suppose we have a procedure that
computes the numerical definite integral of a function. The units of the
numerical value of the integral is the product of the units of the
numerical value of the integrand and the units of the numerical value
of the limits of integration. (The units of the upper and lower limit
must be the same!) However, it is not a good idea to carry the units
computation through all of the detailed arithmetic going on in the
integration process. It should be possible to annotate the integrator so
that the result has the correct units without requiring every internal
addition and multiplication to be a layered procedure operating on
layered data.

a. Make it possible to allow compound procedures that may be
built out of the primitive arithmetic procedures (or possibly not) to
modify the support of their results by adding a premise (such as
“made by George”).

b. Allow compound procedures to be executed in a way that hides
their bodies from the support layer. Thus, for example, a trusted
library procedure may annotate its result with appropriate support,
but the operations in its body will not incur the overhead of
computing the support of intermediate results.

c. The support layer is organized around the operators of an
arithmetic system. But sometimes it is useful to distinguish the
specific occurrences of an operator. For example, when dealing
with numerical precision it is not very helpful to say that a loss of
significance is due to subtraction of almost equal quantities. It
would be more helpful to show the particular instance of
subtraction that is the culprit. Is there some way to add the ability
to identify instances of an operator to the support layer?



Exercise 6.3: Paranoid programming
Sometimes we are not confident that a library procedure does what we
expect. In that case it is prudent to “wrap” the library procedure with a
test that checks its result. For example, we may be using a program
solve that takes as inputs a set of equations and a set of unknowns,
that may occur in the equations, producing a set of substitutions for
the unknowns that satisfy the equations. We might want to wrap the
solve program with a wrapper that checks that the result of
substituting the outputs into the input equations indeed makes them
tautologies. But we don't want such a paranoia wrapper to appear as
part of our parti. How can this sort of thing be implemented as a
layer? Explain your design and implement it.



Exercise 6.4: IDE for layered programs
This exercise is a major design project: the invention of and
development of an IDE (Integrated Development Environment) for
layered systems.

The idea of layered programs, using layered data and layered
procedures, is a very nice idea. The goal is to be able to annotate
programs with useful and executable metadata—such as type
declarations, assertions, units, and support—without cluttering the
text of the base program. However, the text of the program must be
linked with the text of the annotations, so that as any part of the
program is edited, the related layers are also edited. For example,
suppose it is necessary to edit the base procedure of some layered
procedure. The layers may be information like type declarations or
how it handles units and support sets. It would be nice for the editor to
show us these layers and how they are connected to the text of the base
program, when necessary. Perhaps edits to the text of the base
program entail edits to the annotation layers. Sometimes this can be
done automatically, but often the programmer must edit the layers.

a. Imagine what you would like to see in an IDE to support the
development of layered systems. What would you like to see on a
screen? How would you keep the parts that are edited
synchronized?

b. Emacs is a powerful infrastructure for building such an IDE. It
supports multiple windows and per-window editing modes. It has
syntactic support for many computer languages, including Scheme.
There are Emacs subsystems, like org-mode, that have the flavor of
a layered structure for documents. Can this be extended to help
with layered programming? Sketch out a way to build your IDE
using Emacs.

c. Build a small but extensible prototype on the Emacs base, and
try it out. What problems do you encounter? Did Emacs really
provide a good place to start? If not, why not? Report on your
experiment.



d. If your prototype was promising, develop a solid system and
make it into a loadable Emacs library, so we can all use your great
system.

6.4.2 Carrying justifications
More complex justifications may also record the particular operations
that were used to make the data. This kind of annotation can be used
to provide explanations (proofs), but it is intrinsically expensive in
space—potentially linear in the number of operations performed.
However, sometimes it is appropriate to attach a detailed audit history
describing the derivation of a data item, to allow some later process to
use the derivation for some purpose or to evaluate the validity of the
derivation for debugging.5

For many purposes, such as legal arguments, it is necessary to know
the provenance of data: where it was collected, how it was collected,
who collected it, how the collection was authorized, etc. The detailed
derivation of a piece of evidence, giving the provenance of each
contribution, may be essential to determining if it is admissable in a
trial.

The symbolic arithmetic that we built in section 3.1 is one way this
can be done. In fact, if symbolic arithmetic is used as a layer on
numeric arithmetic, then every numerical value is annotated with its
derivation. The symbolic arithmetic annotation could be very
expensive, because the symbolic expression for an application of a
numerical operator includes the symbolic expressions of its inputs.
However, because we need only include a pointer to each input, the
space and time cost of annotating each operation is often acceptable.6
So one may overlay this kind of justification when it is necessary to
provide an explanation, or even temporarily, to track a difficult-to-
catch bug.



Exercise 6.5: Justifications
Sketch out the issues involved in carrying justifications for data.
Notice that the reason for a value depends on the values that it was
derived from and the way those values were combined. What do we do
if the reason for a value is some numerically weighted combination of
many factors, as in a deep neural network? This is a research question
that we need to address to make the systems that affect us
accountable.



6.5 The promise of layering

We have only scratched the surface of what can be done with an easy
and convenient mechanism for layering of data and programs. It is an
open area of research. The development of systems to support such
layering can have huge consequence for the future.

Sensitivity analysis is an important feature that can be built using
annotated data and layered procedures. For example, in mechanics, if
we have a system that evolves the solution of a system of differential
equations from some initial conditions, it is often valuable to
understand the way a tube of trajectories that surround a reference
trajectory deforms. This is usually accomplished by integrating a
variational system along with the reference trajectory. Similarly, it
may be possible to carry a probability distribution of values around a
nominal value along with the nominal value computed in some
analyses. This may be accomplished by annotating the values with
distributions and providing the operations with overlaying procedures
to combine the distributions, guided by the nominals, perhaps
implementing Bayesian analysis. Of course, to do this well is not easy.

An even more exciting but related idea is that of perturbational
programming. By analogy with the differential equations example, can
we program symbolic systems to carry a “tube” of variations around a
reference trajectory, thus allowing us to consider small variations of a
query? Consider, for example, the problem of doing a search. Given a
set of keywords, the system does some magic that comes up with a list
of documents that match the keywords. Suppose we incrementally
change a single keyword. How sensitive is the search to that keyword?
More important, is it possible to reuse some of the work that was done
getting the previous result in the incrementally different search? We
don't know the answers to these questions, but if it is possible, we
want to be able to capture the methods by a kind of perturbational
program, built as an overlay on the base program.

Dependencies mitigate inconsistency



Dependency annotations on data give us a powerful tool for organizing
human-like computations. For example, all humans harbor mutually
inconsistent beliefs: an intelligent person may be committed to the
scientific method yet have a strong attachment to some superstitious
or ritual practices; a person may have a strong belief in the sanctity of
all human life, yet also believe that capital punishment is sometimes
justified. If we were really logicians this kind of inconsistency would be
fatal: if we really were to simultaneously believe both propositions P
and NOT P, then we would have to believe all propositions! But
somehow we manage to keep inconsistent beliefs from inhibiting all
useful thought. Our personal belief systems appear to be locally
consistent, in that there are no contradictions apparent. If we observe
inconsistencies we do not crash; we may feel conflicted or we may
chuckle.

We can attach to each proposition a set of supporting assumptions,
allowing deductions to be conditional on the assumption set. Then, if a
contradiction occurs, a process can determine the particular “nogood
set” of inconsistent assumptions. The system can then “chuckle,”
realizing that no deductions based on any superset of those
assumptions can be believed. This chuckling process, dependency-
directed backtracking, can be used to optimize a complex search
process, allowing a search to make the best use of its mistakes. But
enabling a process to simultaneously hold beliefs based on mutually
inconsistent sets of assumptions without logical disaster is
revolutionary.

Restrictions on the use of data
Data is often encumbered by restrictions on the ways it may be used.
These encumberances may be determined by statute, by contract, by
custom, or by common decency. Some of these restrictions are
intended to control the diffusion of the data, while others are intended
to delimit the consequences of actions predicated on that data.

The allowable uses of data may be further restricted by the sender:
“I am telling you this information in confidence. You may not use it to
compete with me, and you may not give it to any of my competitors.”
Data may also be restricted by the receiver: “I don't want to know



anything about this that I may not tell my spouse.”
Although the details may be quite involved, as data is passed from

one individual or organization to another, the restrictions on the uses
to which it may be put are changed in ways that can often be
formulated as algebraic expressions. These expressions describe how
the restrictions on the use of a particular data item may be computed
from the history of its transmission: the encumberances that are
added or deleted at each step. When parts of one data set are
combined with parts of another data set, the restrictions on the ways
that the extracts may be used and the restrictions on the ways that
they may be combined must determine the restrictions on the
combination. A formalization of this process is a data-purpose
algebra [53] description.

Data-purpose algebra layers can be helpful in building systems that
track the distribution and use of sensitive data to enable auditing and
to inhibit the misuse of that data. But this kind of application is much
larger than just a simple matter of layering. To make it effective
requires ways of ensuring the security of the process, to prevent
leakage through uncontrolled channels or compromise of the tracking
layers. There is a great deal of research to be done here.

 

1 Note that a layer's implementation for a layered procedure may itself
be a generic procedure. Likewise, a handler for a generic procedure
may be a layered procedure.

2 The procedures conjoin and complement are combinators for
predicates: conjoin makes a new predicate that is the boolean and
of its arguments, and complement makes a new predicate that is the
negation of its argument.

3 Watch out! The “base units” are not to be confused with the base-
layer in our layered-data system. A system of units is built on a set
of base units, such as kilograms, meters, and seconds. There are
derived units, such as the newton, which is a combination of the
base units: 1 N = 1 kg · m · s−2



4 If the support sets get large we can try to represent them much more
efficiently, but here we are dealing with only small sets.

5 In Patrick Suppes's beautiful Introduction to Logic [118] the proofs
are written in four columns. The columns are an identifier for the
line, the statement for that line, the rule that was used for deriving
that line from previous lines, and the set of premises that support
the line. This proof structure is actually the inspiration for the way
we carry justifications and support sets.

6 This is not really true. The problem is that the composition of
numerical operations may incur no significant memory access cost,
but the construction of a symbolic expression, however small,
requires access to memory. And memory access time is huge
compared with the time to do arithmetic in CPU registers. Sigh...



7 
Propagation

Decades of programming experience have taken a toll on our collective
imagination. We come from a culture of scarcity, where computation
and memory were expensive, and concurrency was difficult to arrange
and control. This is no longer true. But our languages, our algorithms,
and our architectural ideas are based on those assumptions. Our
languages are basically sequential and directional—even functional
languages assume that computation is organized around values
percolating up through expression trees. Multidirectional constraints
are hard to express in functional languages.

Escaping the Von Neumann straitjacket
The propagator model of computation [99] provides one avenue of
escape. The propagator model is built on the idea that the basic
computational elements are propagators, autonomous independent
machines interconnected by shared cells through which they
communicate. Each propagator machine continuously examines the
cells it is connected to, and adds information to some cells based on
computations it can make from information it can get from others.
Cells accumulate information and propagators produce information.

Since the propagator infrastructure is based on propagation of data
through interconnected independent machines, propagator structures
are better expressed as wiring diagrams than as expression trees. In
such a system partial results are useful, even though they are not
complete. For example, the usual way to compute a square root is by
successive refinement using Heron's method. In traditional
programming, the result of a square root computation is not available
to subsequent computations until the required error tolerance is
achieved. By contrast, in an analog electrical circuit that performed the



same function, the partial results could be used by the next stages as
first approximations to their computations. This is not an
analog/digital problem—it is organizational. In a propagator
mechanism the partial results of a digital process can be made
available without waiting for the final result.

Filling in details
This makes a natural computational structure for building powerful
systems that fill in details. The structure is additive: new ways to
contribute information can be included just by adding new parts to a
network, whether simple propagators or entire subnetworks. For
example, if an uncertain quantity is represented as a range, a new way
of computing an upper bound can be included without disturbing any
other part of the network.

Filling in details plays an important role in all ways we use
information. Consider Kanizsa's triangle (figure 7.1), for example.
Given a few fragmentary pieces of evidence we see a white triangle (on
a white background!) that isn't there (and that is typically described as
brighter than the background). We have filled in the missing details of
an implied figure. When we hear speech we fill in the details from the
observed context, using the regularities of phonology, morphology,
syntax, and semantics. An expert electrical circuit designer who sees a
partial schematic diagram fills in details that make a sensible
mechanism. This filling in of details is not sequential; it happens
opportunistically wherever local deductions can be made from
surrounding clues. Deductions may compound, so that if a piece is
filled in it forms a new clue for the continuing completion process.



Figure 7.1 Kanizsa's triangle is a classic example of a completion illusion. The white triangle
is not there!

Dependencies and backtracking
Using layering, we incorporate dependencies into the propagator
infrastructure in a natural and efficient way. This allows the system to
track and preserve information about the provenance of each value.
Provenance can be used to provide a coherent explanation of how a
value was derived, citing the sources and the rules by which the source
material was combined. This is especially important when we have
multiple sources, each providing partial information about a value.
Dependency tracking also provides a substrate for debugging (and
possibly for introspective self-debugging).

Besides foundation beliefs, hypotheticals may be introduced by amb
machines, which provide alternative values supported by premises
that may be discarded without pain. Unlike systems modeled on
expression-based languages such as Lisp, there is no spurious control
flow arising from the expression structure to pollute our dependencies
and force expensive recomputation of already-computed values when
backtracking.

Degeneracy, redundancy, and parallelism
The propagator model incorporates mechanisms to support the
integration of redundant (actually degenerate) subsystems so that a
problem can be addressed in multiple disparate ways. Multiply



redundant designs can be effective in combating attacks: if there is no
single thread of execution that can be subverted, an attack that
disables or delays one of the paths will not impede the computation,
because an alternate path can substitute. Redundant and degenerate
parallel computations contribute to integrity and resiliency:
computations that proceed along variant paths can be checked to
assure integrity. The work of subverting parallel computations
increases because of the cross-thread invariants.

The propagator model is essentially concurrent, distributed, and
scalable, with strong isolation and a built-in assumption of parallel
computation. Multiple independent propagators are computing and
contributing to the information in the shared cells, where the
information is merged and contradictions are noted and acted upon.



7.1 An example: Distances to stars

Consider a problem of astronomy, the estimation of the distance to
stars. This is very hard, because the distances are enormous. Even for
the closest stars, for which we can use parallax measurements, with
the radius of the Earth's orbit as a baseline, the angular variation of
the position of a star is a small part of an arcsecond. Indeed, the unit
of distance for stellar distances is the parsec, which is the altitude of a
triangle based on the diameter of the Earth's orbit, where the vertex
angle is 2 arcseconds. The parallax is measured by observing the
variation of position of the star against the background as the Earth
revolves annually around the Sun. (See figure 7.2.)

Figure 7.2 The angle θ of the triangle to the distant star erected on the semimajor axis of the
Earth's orbit around the Sun is called the parallax of the star. Note that A/d = tan(θ). If θ = 1
arcsecond then the distance d is defined to be 1 parsec. The length of the semimajor axis A is 1
Astronomical Unit (AU) = 149597870700 meters.

We define a propagator that relates the parallax of a star, in radians,
to the distance to the star, in parsecs:

(define-c:prop (c:parallax<->distance parallax distance)

  (let-cells (t (AU AU-in-parsecs))

    (c:tan parallax t)

    (c:* t distance AU)))

Here, the special form define-c:prop defines a special kind of



procedure, a constructor named c:parallax<->distance. When
c:parallax<->distance is given two cells, locally named parallax
and distance, as its arguments, it constructs a constraint propagator
that relates those cells. Using the special form let-cells it creates
two new cells, one locally named t, and the other locally named AU.
The cell named t is not initialized; the cell named AU is initialized to
the numerical value of the Astronomical Unit, the semimajor axis of
the Earth's orbit, in parsecs. The cell named parallax and the cell
named t are connected by a primitive constraint propagator
constructed by c:tan, imposing the constraint that any value held by t
must be the tangent of the value held by parallax. Similarly, the cells
named t, distance, and AU are connected by a primitive constraint
propagator constructed by c:*, imposing the constraint that the
product of the value in cell t and the value in cell distance is the
value in AU.

Let's think about the distance to the star Vega, as measured by
parallax. We make two cells, Vega-parallax-distance for the
distance, and Vega-parallax for the parallax angle:

(define-cell Vega-parallax-distance)

(define-cell Vega-parallax)

Now we can interconnect our cells with the propagator constructor
that we just defined:

(c:parallax<->distance Vega-parallax Vega-parallax-distance)

The system of cells and propagators so constructed is illustrated in
figure 7.3.



Figure 7.3 Here we see a “wiring diagram” of the propagator system constructed by calling
c:parallax<->distance on the cells named Vega-parallax-distance (Vega d in the diagram)
and Vega-parallax (Vega θ in the diagram). Circles indicate cells, and other shapes indicate
propagators interconnecting the cells. These propagators are not directional—they enforce
algebraic constraints. By convention we name constraint-propagator constructors with the
prefix c:. For example, the propagator constructed by c:* enforces the constraint that the
product of the contents of the cell t and the contents of the cell Vega-parallax-distance is the
contents of the cell AU.

The constraint propagators are themselves made up of directional
propagators, as shown in figure 7.4. A directional propagator, such as
the multiplier constructed by p:*, adjusts the value in the product cell
to be consistent with the values in the multiplier and multiplicand
cells. It is entirely appropriate to mix directional propagators and
constraint propagators in a propagator system.1 Now let's use this
small system to compute. Friedrich G. W. von Struve in 1837
published an estimate of the parallax of Vega: 0.125” ± 0.05”.2 This
was the first plausible published measurement of the parallax of a star,
but because his data was sparse and he later contradicted that data,
the credit for the first real measurement goes to Friedrich Wilhelm
Bessel, who did a careful measurement of the parallax of the star 61
Cygni in 1838. However, Struve's estimate is quite close to the current
best estimate of the parallax of Vega. We tell our propagator system
Struve's estimate of 125 milliarcseconds plus or minus 50
milliarcseconds:

Figure 7.4 The constraint propagator constructed by c:* is made up of three directional



propagators. By convention we name the directional-propagator constructors with the prefix
p:. The directional multiplier propagator, constructed by p:*, forces the value in c to be the
product of the values in cells a and b. The divider propagators, constructed by p:/, force the
value in their quotient cells (a and b) to be the result of dividing the value in the dividend cell
(c) by the value in the divisor cells (b and a).

(tell! Vega-parallax

       (+->interval (mas->radians 125) (mas->radians 50))

       ’FGWvonStruve1837)

The procedure tell! takes three arguments: a propagator cell, a value
for that cell, and a premise symbol describing the provenance of the
data. The procedure mas->radians converts milliarcseconds to
radians. The procedure +->interval makes an interval centered on
its first argument:

(define (+->interval value delta)

  (make-interval (n:- value delta) (n:+ value delta)))

So the Vega-parallax cell is given the interval

(+->interval (mas->radians 125) (mas->radians 50))

(interval 3.6361026083215196e-7 8.48423941941688e-7)

Struve's estimate of the error in his result was a pretty big fraction of
the estimated parallax. So his estimate for the distance to Vega is
pretty wide (roughly 5.7 to 13.3 or 9.5 ± 3.8 parsecs):

(get-value-in Vega-parallax-distance)

(interval 5.7142857143291135 13.33333333343721)

(interval>+- (get-value-in Vega-parallax-distance))

(+- 9.523809523883163 3.8095238095540473)

This interval value is supported by the premise FGWvonStruve1837.

(get-premises Vega-parallax-distance)

(support-set fgwvonstruve1837)

We will use a procedure inquire that nicely shows the value of the
cell and the support for that value:3

(inquire Vega-parallax-distance)

((vega-parallax-distance)



 (has-value (interval 5.7143e0 1.3333e1))

 (depends-on fgwvonstruve1837)

 (because

  ((p:/ c:* c:parallax<->distance)

   (au 4.8481e-6)
   (t (interval 3.6361e-7 8.4842e-7)))))

A tighter bound, reported by Russell et al. in 1982 [106], is

(tell! Vega-parallax

       (+->interval (mas->radians 124.3) (mas->radians 4.9))

       ’JRussell-etal1982)

which seems pretty close to the center of Struve's estimate. With that
measurement, the distance estimate is narrowed to

(inquire Vega-parallax-distance)

((vega-parallax-distance)

 (has-value (interval 7.7399 8.3752))

 (depends-on jrussell-etal1982))

Notice that our estimate of the distance to Vega now depends only on
the Russell measurement. Because the interval of the Russell
measurement is entirely contained in the interval of the Struve
measurement, the Struve measurement provides no further
information. But the cell remembers the Struve measurement and its
provenance so it can be recovered, if needed.

By 1995 there were some better measurements:4

(tell! Vega-parallax

       (+->interval (mas->radians 131) (mas->radians 0.77))

       ’Gatewood-deJonge1995)

((vega-parallax)

 (has-value (the-contradiction))

 (depends-on jrussell-etal1982 gatewood-dejonge1995)

 (because

  ((has-value (interval 5.7887e-7 6.2638e-7))

   (depends-on jrussell-etal1982))

  ((has-value (interval 6.3137e-7 6.3884e-7))

   (depends-on gatewood-dejonge1995))))

We see that the contradiction depends on the two sources of
information. Each source provides an interval, and the intervals do not
overlap. Suppose we think that the measurement by Gatewood and de



Jonge looks suspicious. Let's retract that premise:

(retract! ’Gatewood-deJonge1995)

All values that depend on the retracted premise are now retracted, and
thus the value that we see for the distance has reverted to

(inquire Vega-parallax-distance)

((vega-parallax-distance)

 (has-value (interval 7.7399 8.3752))

 (depends-on jrussell-etal1982))

This is what we got from Russell et al.; and indeed that premise
supports the value.

But the plot thickens, because the Hipparcos satellite (as reported
by Van Leeuwen [83]) made some very impressive measurements of
the parallax of Vega:

(tell! Vega-parallax

       (+->interval (mas->radians 130.23) (mas->radians 0.36))

       ’FvanLeeuwen2007Nov)

((vega-parallax)

 (has-value (the-contradiction))

 (depends-on jrussell-etal1982 fvanleeuwen2007nov)

 (because

  ((has-value (interval 5.7887e-7 6.2638e-7))

   (depends-on jrussell-etal1982))

  ((has-value (interval 6.2963e-7 6.3312e-7))

   (depends-on fvanleeuwen2007nov))))

Which do we believe?5 Let's reject the Russell result:

(retract! ’JRussell-etal1982)

(inquire Vega-parallax-distance)

((vega-parallax-distance)

 (has-value (interval 7.6576 7.7))

 (depends-on fvanleeuwen2007nov))

Here we have the satellite's result isolated.
Now let's add back Gatewood and see what happens:

(assert! ’Gatewood-deJonge1995)

(inquire Vega-parallax-distance)



((vega-parallax-distance)

 (has-value (interval 7.6576 7.6787))

 (depends-on gatewood-dejonge1995 fvanleeuwen2007nov))

We get a stronger result because the intersection of the intervals of
Van Leeuwen and Gatewood is smaller than either separately.6 (The
Gatewood result, (interval 7.589 7.6787), is not shown.)

Magnitudes
There are other ways to estimate the distance to a star. We know that
the apparent brightness of a star decreases with the square of the
distance from us, so if we knew the intrinsic brightness of the star we
could get the distance by measuring its apparent brightness.

By now we have a pretty good theoretical understanding that can
give reliable and accurate estimates of the intrinsic brightness of some
kinds of stars. For those stars, spectroscopic analysis of the light we
receive from the star gives us information about, for example, its state,
its chemical composition, and its mass; and from these we can
estimate the intrinsic brightness. Vega is a very good example of a star
we know a lot about.

Astronomers describe the brightness of a star in magnitudes. A
difference of 5 magnitudes is defined to be a factor of 100 in
brightness.7 The intrinsic brightness of a star is given as the magnitude
it would appear to have if it were situated 10 parsecs away from the
observer. This is called the absolute magnitude of the star. We can
summarize the connection between brightness and distance in a neat
formula that combines the inverse square law with the definition of
magnitudes. If M is the absolute magnitude of a star, m is its apparent
magnitude, and d is the distance to the star in parsecs, then m − M =
5(log10(d) − 1). This formula can be represented by a constraint-
propagator constructor:8

(define-c:prop

  (c:magnitudes<->distance apparent-magnitude

                           absolute-magnitude

                           magnitude-distance)

  (let-cells (dmod dmod/5 ld10 ld

              (ln10 (log 10)) (one 1) (five 5))

    (c:+ absolute-magnitude dmod apparent-magnitude)



    (c:* five dmod/5 dmod)

    (c:+ one dmod/5 ld10)

    (c:* ln10 ld10 ld)

    (c:exp ld magnitude-distance)))

Now let's wire up some knowledge of Vega. We define some cells
and interconnect them with the propagators:

(define-cell Vega-apparent-magnitude)

(define-cell Vega-absolute-magnitude)

(define-cell Vega-magnitude-distance)

(c:magnitudes<->distance Vega-apparent-magnitude

                         Vega-absolute-magnitude

                         Vega-magnitude-distance)

We now provide some measurements. Vega is very bright: its apparent
magnitude is very close to zero. (The Hubble space telescope was used
to make this very precise measurement. See Bohlin and Gilliland [14].)

(tell! Vega-apparent-magnitude

       (+->interval 0.026 0.008)

       ’Bohlin-Gilliland2004)

And the absolute magnitude of Vega is also known to rather high
precision [44]:

(tell! Vega-absolute-magnitude

       (+->interval 0.582 0.014)

       ’Gatewood2008)

As a consequence we get a pretty nice estimate of the distance to Vega,
which depends only on these measurements:

(inquire Vega-magnitude-distance)

((vega-magnitude-distance)

 (has-value (interval 7.663 7.8199))

 (depends-on gatewood2008 bohlingilliland2004))

Unfortunately, we have the distance in two different cells, so let's
connect them with a propagator:

(c:same Vega-magnitude-distance Vega-parallax-distance)

At this point we have an even better value for the distance to Vega—



an interval whose high end is the same as before (on page 336), but
whose low end is a bit higher:

(inquire Vega-parallax-distance)

((vega-parallax-distance)

 (has-value (interval 7.663 7.6787))

 (depends-on fvanleeuwen2007nov gatewood-dejonge1995

             gatewood2008 bohlingilliland2004))

Does the 1995 measurement of Gatewood and de Jonge really
matter here? Let's find out:

(retract! ’Gatewood-deJonge1995)

(inquire Vega-parallax-distance)

((vega-parallax-distance)

 (has-value (interval 7.663 7.7))

 (depends-on fvanleeuwen2007nov

             gatewood2008

             bohlingilliland2004))

Indeed it does. The 1995 measurement pulled in the high end of the
interval.

Measurements Improved!
We have two ways of computing the distance to Vega—from parallax
and from magnitude. Here is something remarkable: the parallax and
magnitude measurement intervals are each improved using the
information coming from the other. This is required in order for the
system to be consistent.

Look at the apparent magnitude of Vega. The original measurement
supplied from Bohlin and Gilliland was m = 0.026 ± 0.008. This
translates to the interval

(+->interval 0.026 0.008)

(interval .018 .034)

But now the value is a bit better—[0.018, 0.028456]:

(inquire Vega-apparent-magnitude)

((vega-apparent-magnitude)

 (has-value (interval 1.8e-2 2.8456e-2))



 (depends-on gatewood2008

             fvanleeuwen2007nov

             bohlin-gilliland2004))

The high end had to be pulled in to be consistent with the information
from the parallax measurements. This is true for each measurable
quantity. The absolute magnitude supplied by Gatewood 2008 (page
338) was:

(+->interval 0.582 0.014)

(interval .568 .596)

But now the low end is pulled in:

(inquire Vega-absolute-magnitude)

((vega-absolute-magnitude)

 (has-value (interval 5.8554e-1 5.96e-1))

 (depends-on gatewood2008

             fvanleeuwen2007nov

             bohlin-gilliland2004))

The parallax is also improved by information from the magnitude
measurements:

(inquire Vega-parallax)

((vega-parallax)

 (has-value (interval 6.2963e-7 6.3267e-7))

 (depends-on fvanleeuwen2007nov

             gatewood2008

             bohlin-gilliland2004))

The fact that the computation propagates in all directions gives us a
powerful tool for understanding the implications of any new
information.



Exercise 7.1: Making writing propagator networks easier
In our propagator system it is pretty painful to write the code to build
even a simple network, because all internal nodes must be named. For
example, a constraint propagator that converts between Celsius and
Fahrenheit temperatures looks like:

(define-c:prop (celsius fahrenheit)

  (let-cells (u v (nine 9) (five 5) (thirty-two 32))

    (c:* celsius nine u)

    (c:* v five u)

    (c:+ v thirty-two fahrenheit)))

It would be much nicer to be able to use expression syntax for some
propagators, so we could write:

(define-c:prop (celsius fahrenheit)

  (c:+ (ce:* (ce:/ (constant 9) (constant 5))

             celsius)

       (constant thirty-two)

       fahrenheit))

Here ce:* and ce:+ are propagator constructors that create the cell
for the value and return it to their caller. The procedure ce:+ could be
written:

(define (ce:+ x y)

  (let-cells (sum)

    (c:+ x y sum)

    sum))

Besides constraint propagators, there are also directional
propagators such as p:+. A nice name for the expression form of this is
pe:+.

We have access to the names of all of the primitive arithmetic
operators. Write a program that takes these names and installs both
directional- and constraint-expression forms for each operator.



Exercise 7.2: An electrical design problem
Note: You don't need to know electronics to do this problem.
Anna Logue is designing a transistor amplifier. As part of her plan she
needs to make a voltage divider to bias a transistor. The voltage
divider is made of two resistors, with resistance values R1 and R2. ρ is
the ratio of output voltage Vout to power-supply voltage Vin. There is
also Z, the output resistance of the divider.

Here are the relevant equations:

Since Anna has many problems like this to solve, she makes a
constraint network to help her:



a. Make a propagator network that implements this diagram.

b. Anna has a power supply with a voltage between 14.5 and 15.5
volts, and she needs the output of the voltage divider to be between
3.5 and 4.0 volts: Vin ∈ [14.5, 15.5] and Vout ∈ [3.5, 4.0].

She has in stock a 47000-ohm resistor for R2. What is the range
of values from which she can select R1? Can she choose a value for
R1 that satisfies her specification?

c. Anna also needs the output resistance of the divider to be
between 20000 and 30000 ohms: Z ∈ [20000, 30000].

So her real problem is to find appropriate ranges of values for
the voltage-divider resistors R1 and R2 given the division ratio ρ
required and the specification of Z.

If instead of choosing R2 (remember to retract the support for
this value!) she chooses to assert the Z specification, this should
determine R1 and R2; but the network will not find the value of R2!
Why? Explain this problem.

d. If we now tell R2 that it is somewhere in the range of 1000 ohms
to 500000 ohms, the propagator network will converge to give a
useful answer for the real range of R2. Why? Explain this!



Exercise 7.3: Local consistency—a project
Propagation is a way of attacking local consistency problems. For
example, the Waltz algorithm [125] is a propagation method for
interpreting line drawings of solid polyhedra. Map coloring and
similar problems can be successfully attacked using propagation.

The essential idea is that there is a graph with nodes that can be
assigned one of a set of discrete labels, and that the nodes are
interconnected by constraints that limit which labels are allowed
based on the labels in neighboring nodes. For example, in the Waltz
algorithm a line may have one of several labels. Each line connects two
vertices. A vertex constrains the lines that terminate on it to be
consistent with one of a set of possible geometric interpretations of the
vertex. But the interpretation of a line must be the same at both ends
of the line.

a. For these experiments you will need an “arithmetic” of discrete
sets. You will need unions, intersections, and the complement of
one set in another. Build such an arithmetic.

b. The set of possibilities for a node is partial information about
the actual status of the node: the smaller the set of possibilities the
more information we have about the node. If we represent the
knowledge about the status of a node as a propagator cell, the
merger of two sets is their intersection. This is consistent with the
intersection of intervals for ranges of real values. Make intersection
of discrete sets a handler for generic merge.

c. Build and demonstrate your solution to a local consistency
problem using this organization.

d. Notice that in many graphs the assignment of a node depends
only on a few of the constraints. Show how to use support tracking
to give explanations for the assignment of a node.



7.2 The propagation mechanism

The essential propagation machinery consists of cells, propagators,
and a scheduler. A cell accumulates information about a value. It must
be able to say what information it has, and it must be able to accept
updates to that information. It also must be able to alert propagators
that are interested in its contents about changes to its contents. Each
cell maintains a set of propagators that may be interested in its
contents; these are called neighbors.

A propagator is a stateless (functional) procedure that is activated
by changes in the value of any cell it is interested in. Cells that may
activate a propagator are its input cells. An activated propagator
gathers information from its input cells and may compute an update
for one or more output cells. A cell may be both an input and an
output for a propagator.

The content of a cell is the information it has accumulated about its
value. When asked for its value, for example by a propagator, it
responds with the strongest value it can provide. We have seen this in
the use of intervals—a cell reports the tightest possible interval it
knows about for its value. When a cell receives input it determines if
the change in its contents makes a change in its strongest value. If the
strongest value changes, the cell alerts its neighbors. This tells the
scheduler to activate them. The scheduler is responsible for allocating
computational resources to the activated propagators. It is intended
that the computational result of propagation is independent of the
details or order of scheduling.

Cells and propagators are elements organized in a hierarchy. Each
cell or propagator has a name, a parent, and perhaps a set of children.
These are used to construct unique path names for each cell or
propagator in the hierarchy. The path name can be used to access the
element and to identify it in printed output. A cell or propagator is
made either by the user or by a compound propagator. The parameter
*my-parent* is dynamically bound by the parent. This allows the new
cell or propagator to attach itself to the family.



7.2.1 Cells
A cell is implemented as a message-accepting procedure, using the
bundle macro. The cell maintains its information in the content
variable, which is initialized to a value the-nothing (identified by the
predicate nothing?) that represents the absence of any information
about the value. The value that the cell reports, when asked, is the
strongest value that it has at the moment. The cell also maintains a
list of its neighbors, the propagators that need to be alerted when the
strongest value of the cell changes. An auxiliary data structure
relations is used to hold the cell's family relations.

Here is an outline of the constructor for cells. The interesting parts
are add-content! and test-content!, explained below.

(define (make-cell name)

  (let ((relations (make-relations name (*my-parent*)))

        (neighbors ’())

        (content the-nothing)

        (strongest the-nothing))

    (define (get-relations) relations)

    (define (get-neighbors) neighbors)

    (define (get-content) content)

    (define (get-strongest) strongest)

    (define (add-neighbor! neighbor)

      (set! neighbors (lset-adjoin eq? neighbors neighbor)))

    (define (add-content! increment)

      (set! content (cell-merge content increment))

      (test-content!))

    (define (test-content!)

      See definition on page 345.)

    (define me

      (bundle cell? get-relations get-neighbors

              get-content get-strongest add-neighbor!

              add-content! test-content!))

    (add-child! me (*my-parent*))

    (set! *all-cells* (cons me *all-cells*))

    me))

A cell receives new information through a call to add-content!.
The new information, increment, must be merged with the existing
information in content. In general, the merging process is specific to
the kind of information being merged, so the merging mechanism for
the cell must be specified. However, the-nothing, which represents



the absence of information, is special. Any information merged with
the-nothing is returned unchanged.

The reason for merging rather than replacement is to use partial
information to refine our knowledge of the value.9 For example, in the
computation of stellar distances described above, intervals are merged
to produce better estimates by intersection. In the type-inference
example (see section 4.4.2) we combined descriptions by unification to
get more specific information. We will examine the general problem of
merging values in section 7.4.

In some cases it may not be possible to merge two pieces of
information. For example, the value of an unknown number cannot be
both zero and one. In this case cell-merge returns a contradiction
object, which may carry information about the details of the conflict. If
there is no extra information to be had, the contradiction object is the
symbol the-contradiction, which satisfies the primitive predicate
contradiction?. More complex contradictions are detected by the
generic predicate procedure general-contradiction?.
Contradictions are resolved, if possible, by handle-cell-

contradiction, as explained in section 7.5.
If the cell's strongest value changes, the neighbors are alerted. But if

an increment does not affect the strongest value, it provides no
additional information; in that case it is important to avoid alerting
the neighbors, to prevent useless loops. All this is implemented by the
test-content! procedure, which is defined as an internal procedure
in make-cell.

(define (test-content!)

  (let ((strongest* (strongest-value content)))

    (cond ((equivalent? strongest strongest*)

           (set! strongest strongest*)

           ’content-unchanged)

          ((general-contradiction? strongest*)

           (set! strongest strongest*)

           (handle-cell-contradiction me)

           ’contradiction)

          (else

           (set! strongest strongest*)

           (alert-propagators! neighbors)

           ’content-changed))))



The procedure test-content! is also used to alert all cells when a
premise changes its belief status. Each alerted cell checks if its
strongest value has changed, requiring some action, like signaling a
contradiction or alerting its propagator neighbors. See section 7.3.

To hide the implementation details of a cell we provide convenient
access procedures:

(define (add-cell-neighbor! cell neighbor)

  (cell ’add-neighbor! neighbor))

(define (add-cell-content! cell increment)

  (parameterize ((current-reason-source cell))

    (cell ’add-content! increment)))

(define (cell-strongest cell)

  (cell ’get-strongest))

The current-reason-source parameter in add-cell-content! is
part of the layer that gives a reason for every value, as described in
footnote 3 on page 333. This useful feature will not be further
elaborated here.

7.2.2 Propagators
To make a propagator we supply a list of input cells, a list of output
cells, and a procedure activate! to execute when alerted. The
constructor introduces the propagator to its input cells with add-
cell-neighbor!. It also alerts the new propagator so that it will be
run if needed.

(define (propagator inputs outputs activate! name)

  (let ((relations (make-relations name (*my-parent*))))

    (define (get-inputs) inputs)

    (define (get-outputs) outputs)

    (define (get-relations) relations)

    (define me

      (bundle propagator? activate!

              get-inputs get-outputs get-relations))

    (add-child! me (*my-parent*))

    (for-each (lambda (cell)

                (add-cell-neighbor! cell me))

              inputs)

    (alert-propagator! me)



    me))

Primitive propagators are directional in that their outputs do not
overlap with their inputs. We make primitive propagators from
Scheme procedures that produce a single output. By convention, we
build a primitive propagator by passing the input cells and the output
cell together, with the output last. We could make a primitive
propagator that produced several outputs, such as integer divide with
remainder, but we do not need this here.

(define (primitive-propagator f name)

  (lambda cells

    (let ((output (car (last-pair cells)))

          (inputs (except-last-pair cells)))

      (propagator inputs (list output)

        (lambda ()

          (let ((input-values (map cell-strongest inputs)))

            (if (any unusable-value? input-values)

                ’do-nothing

                (add-cell-content! output

                  (apply f input-values)))))

        name))))

When activated, a propagator may choose to compute a result using f.
The result of calling f on the input values is added to the output cell.
We call this choice process the activation policy. Here we require all
inputs to be usable values. By default, contradiction objects and the-
nothing are unusable, though we may add others later. Other policies
are possible.

Propagators may be constructed by combining other propagators.
We make compound propagators by supplying a procedure to-build
that builds the desired network from parts. A compound propagator is
not built until it is needed to make a computation. But that need arises
only when data arrives at one or more of its input cells to activate it.
However, we do not want to rebuild the compound propagator
network every time it gets new values in its input cells, so the
constructor must make sure that it is built only once. This is arranged
with a boolean flag built? that is set when the build is done.

(define (compound-propagator inputs outputs to-build name)

  (let ((built? #f))

    (define (maybe-build)



      (if (or built?

              (and (not (null? inputs))

                   (every unusable-value?

                          (map cell-strongest inputs))))

          ’do-nothing

          (begin (parameterize ((*my-parent* me))

                   (to-build))

                 (set! built? #t)

                 ’built)))

    (define me

      (propagator inputs outputs maybe-build name))

    me))

The activation policy for a compound propagator is different from the
activation policy for a primitive propagator. Here we build the network
if any input has a usable value. This is appropriate because some part
of the network may do some useful computation even if not all of the
inputs are available.

The parameterize machinery is in support of the hierarchical
organization of the propagator elements. It makes the compound
propagator the parent of any cells or propagators that are constructed
in the building of the network.

As described in figure 7.4 on page 332, constraint propagators are
constructed by combining directional propagators. For example, we
can make the propagator that enforces the constraint that the product
of the values in two cells is the value in the third as follows:

(define-c:prop (c:* x y product)

  (p:* x y product)

  (p:/ product x y)

  (p:/ product y x))

Here we see that three directional propagators are combined to make
the constraint. This can work because we merge values rather than
replacing them, and equivalent values do not propagate. If equivalent
values propagated, anything like the c:* propagator would be an
infinite loop.10

The macro define-c:prop is just syntactic sugar. The actual code
produced by the macro is:

(define (c:* x y product)

  (constraint-propagator



   (list x y product)

   (lambda ()

     (p:* x y product)

     (p:/ product x y)

     (p:/ product y x))

   ’c:*))

where constraint-propagator is just:

(define (constraint-propagator cells to-build name)

  (compound-propagator cells cells to-build name))

All the cells associated with a constraint propagator are both input and
output cells.



7.3 Multiple alternative world views

In our stellar distances example we showed that each value carried the
support set of premises used in its computation, and also the “reason”
for the value (the propagator that made it and the values that it was
made from). This was done using the layered-data mechanism we
introduced in section 6.4. But some “facts” are mutually inconsistent.
In our example we modulated the belief in the premises to obtain
locally consistent world views, depending on which premises we chose
to believe.

A premise is either in (believed) or out (not believed). The user in
our example could assert! a premise to bring it in or retract! it to
kick it out. The “magic” in the system is that the observable values in
cells are always those that are fully supported—those for which the
supporting premises are all in—even as the beliefs in the premises are
changed.11

It is silly to recompute all of the values as the belief status of the
support changes. We can do better by remembering values that are not
currently fully supported. This allows us to reassert a premise, and
recover the values that it supports without recomputing those values.
When the state of belief in a premise changes, cells must check if their
strongest value has changed. This is accomplished by calling the test-
content! for every cell; each cell whose strongest value changes alerts
the propagators that depend on that cell's value. Each of those
propagators then gets the strongest values of the contents of its input
cells and computes (or recomputes!) its output value. If that output
value is equivalent to the strongest value already stored in the output
cell, there will be no further action. If the belief status of the strongest
value in the output cell changes, this will cause its neighboring
propagators to recompute. But the strongest value in the output cell
may have independent support, in which case the propagation will
stop there.

To make this work, in each cell the content may hold a set of values
(the value set) paired with the premises they depend upon. The cell



extracts the strongest-value from the content and keeps it in the
local variable strongest, which can be accessed using cell-

strongest. The strongest value is the best choice of the fully
supported values in the set,12 or the-nothing if none of the values in
the set are fully supported.

It remains to elucidate strongest-value, which must be able to
operate on raw data, on layered data, and on value sets. Thus it is
appropriate to make it a generic procedure. The strongest value of an
unannotated data item is just that data item, so this provides the
default.

(define strongest-value

  (simple-generic-procedure ’strongest-value 1

                            (lambda (object) object)))

If a layered data item is fully supported, then its strongest value is
itself, otherwise its strongest value is no information.

(define-generic-procedure-handler strongest-value

  (match-args layered-datum?)

  (lambda (elt)

    (if (all-premises-in? (support-layer-value elt))

        elt

        the-nothing)))

The strongest value of a value set is the strongest consequence of
the set:

(define-generic-procedure-handler strongest-value

  (match-args value-set?)

  (lambda (set) (strongest-consequence set)))

The procedure strongest-consequence just merges together the
elements of a value set that are fully supported. It uses merge-layered
to determine the “best choice” of the fully supported values in the
value set (see section 7.4.2). If there are no fully supported values
there is no information, so the result is the-nothing.

(define (strongest-consequence set)

  (fold (lambda (increment content)

          (merge-layered content increment))

        the-nothing

        (filter (lambda (elt)



                  (all-premises-in?

                    (support-layer-value elt)))

                (value-set-elements set))))



7.4 Merging values

We have not addressed what it means to merge values. This is a
complicated process, with three parts: merging base values, such as
numbers and intervals; merging supported values; and merging value
sets. The procedure cell-merge in add-content! must be assigned to
an appropriate merger for the data being propagated. On page 366,
setup-propagator-system initializes cell-merge to merge-value-
sets.

7.4.1 Merging base values
There are only a few base value types in our example propagator
system: the-nothing, the-contradiction, numbers, booleans, and
intervals. Numbers and booleans are simple in that only equivalent
values can be merged. If they cannot be merged it is a contradiction.
Anything merged with the-nothing is itself. Anything merged with
the-contradiction is the-contradiction. The merge procedure is
generic for base values, and the default handler deals with all the
simple cases—all except intervals.

(define merge

  (simple-generic-procedure 'merge 2

    (lambda (content increment)

      (cond ((nothing? content) increment)

            ((nothing? increment) content)

            ((contradiction? content) content)

            ((contradiction? increment) increment)

            ((equivalent? content increment) content)

            (else the-contradiction)))))

In the astronomy example we also have interval arithmetic, so we
need to be able to merge intervals:

(define (merge-intervals content increment)

  (let ((new-range (intersect-intervals content increment)))

    (cond ((interval=? new-range content) content)

          ((interval=? new-range increment) increment)

          ((empty-interval? new-range) the-contradiction)



          (else new-range))))

We can merge a number with an interval. We get the number if it is
contained in the interval, otherwise it is a contradiction:

(define (merge-interval-real int x)

  (if (within-interval? x int)

      x

      the-contradiction))

This all gets glued together as a generic procedure handler:

(define-generic-procedure-handler merge

  (any-arg 2 interval? real?)

  (lambda (x y)

    (cond ((not (interval? x)) (merge-interval-real y x))

          ((not (interval? y)) (merge-interval-real x y))

          (else (merge-intervals x y)))))

There are no other cases of base value merges.

7.4.2 Merging supported values
A supported value is implemented as a layered data item that has a
support layer and the base value being propagated. So the merger for
supported values must be a layered procedure:

(define merge-layered

  (make-layered-procedure 'merge 2 merge))

The support layer implements merge with support:merge, which is
given three arguments: the merged value computed by the base layer,
the current content, and the new increment. The job of
support:merge is to deliver the support set appropriate for the
merged value. If the merged value is the same as the value from the
content or the value from the increment, we can use that argument's
support. But if the merged value is different, we need to combine the
supports.

(define (support:merge merged-value content increment)

  (cond ((equivalent? merged-value

                      (base-layer-value content))

         (support-layer-value content))

        ((equivalent? merged-value



                      (base-layer-value increment))

         (support-layer-value increment))

        (else

         (support-set-union

           (support-layer-value content)

           (support-layer-value increment)))))

(define-layered-procedure-handler merge-layered support-layer

  support:merge)

Here define-layered-procedure-handler is used to attach the
procedure support:merge to the layered procedure merge-layered as
its support-layer handler.

7.4.3 Merging value sets
To merge value sets, we just add the elements of the increment to the
content to make a new set. Note that ->value-set coerces its
argument to a value set.

(define (merge-value-sets content increment)

  (if (nothing? increment)

      (->value-set content)

      (value-set-adjoin (->value-set content) increment)))

When adjoining a new element to the content, we do not add the
element if it is subsumed by any existing content element.

(define (value-set-adjoin set elt)

  (if (any (lambda (old-elt)

             (element-subsumes? old-elt elt))

           (value-set-elements set))

      set

      (make-value-set

       (lset-adjoin equivalent?

                    (value-set-elements set)

                    elt))))

The criteria for subsumption are a bit complicated. One element
subsumes another if its base value is at least as informative as the
other's base value and if its support is a subset of the other's. (Note: A
smaller support set is a stronger support set, because it depends on
fewer premises.)



(define (element-subsumes? elt1 elt2)

  (and (value-implies? (base-layer-value elt1)

                       (base-layer-value elt2))

       (support-set<= (support-layer-value elt1)

                      (support-layer-value elt2))))

The procedure value-implies? is a generic procedure, because it
must be able to work with many kinds of base data, including
intervals.



Exercise 7.4: Merging with unification
We have seen how intervals that partially specify a numerical value
can be merged to get more specific information about that value.
Another kind of partial information is symbolic patterns, with holes
for missing information. This kind of information can be merged using
unification, as described in section 4.4. We used unification to
implement a simple version of type inference, but it can be used more
generally for combining partially specified symbolic expressions. The
example of combining records about Ben Franklin in section 4.4 may
be suggestive. One way to think about organizing a propagator system
is that each cell is a small database restricted to information about
some particular thing. The propagators interconnecting cells are ways
that deductions can be made. For example, one promising domain is
the classification of topological spaces in point-set topology. Another
is the organization of your living group—for example, the adjacency
relationships of rooms and the social relationships of the inhabitants.
Pick a domain that you find interesting. Use your imagination!

a. Design a propagator network where each cell will hold some
particular kind of symbolic information. For example, a cell may
represent what is known about a student at MIT. The information
may be name, address, telephone number, class year, major,
birthday, best friends... This requires designing an extensible data
structure that can hold this information and more. You will also
need propagators that relate the people. So you may get
information from one person, or from multiple people, about
another. This may be a nice model of gossip. Make some primitive
propagators that manipulate these symbolic quantities and wire up
an interesting network.

b. Add unification as a generic procedure handler for merge, and
show how it can be used to combine partial symbolic information
coming in from multiple sources.

c. Discover some interesting compound symbolic propagators that
can be used to represent the common combinations of connections



of related subjects in your network.



7.5 Searching possible worlds

It would be nice if search were unnecessary. Unfortunately, for many
kinds of real problems it is helpful to “assume for the sake of
argument” something that may not be true. We then work out the
consequences of that assumption. If the assumption leads to a
contradiction, we retract it and try something else. But in any case, the
assumption may enable other deductions that help solve the problem.

We started to explore this idea in section 5.4, where we introduced
amb and used it in search problems. In those adventures with amb we
were working in an expression-oriented language with an order of
execution that was constrained by the way expressions are evaluated.
We partly extracted ourselves from that constraint with the painful use
of continuations, either structuring the evaluator to explicitly pass
around continuation procedures (in section 5.4.2), or using Scheme's
implicit continuations via call/cc (in section 5.5.3). But even with
call/cc we do not have sufficient control of the search process.

In section 6.4 we showed how to associate each value with a support
set, the set of premises that the value depends on. If each assumption
is labeled with a new premise, we can know exactly the combination of
assumptions that led to a contradiction. If we are clever, we can avoid
asserting that combination of assumptions later in the search. But in
the evaluation of expressions it is hard to isolate the assertion of
assumptions from the flow of control.

The problem is that in an expression language, the choice decisions
are made as expressions are evaluated, producing a branching decision
tree. The decision tree is evaluated in some order, for example, depth
first or breadth first. The consequences of any sequence of decisions
are evaluated after the decisions are made. If a failure is encountered
(a contradiction is noted), only the decisions on the evolved branch are
possible culprits. But if only some of the decisions on the branch are at
fault, there may be some innocent ones that were made later than the
last culprit. Computations that depend only on the innocent decisions
are lost in backing up to the last culprit. So retracting a branch to an
earlier decision may require losing lots of useful deductions.



By contrast, in real problems the consequences of decisions are
usually local and limited. For example, when solving a crossword
puzzle we often get stuck—we are unable to fill in any blanks that we
are sure of. But we can make progress by assuming that some box
contains a particular letter, without very good evidence for that
assumption. Positing that the box contains that letter allows
deductions to follow, but eventually it may be found that the
assumption was incorrect and must be retracted. However, many of
the deductions made since the assumption are correct, because they
did not depend on that assumption. We do not retract those correct
deductions just to eliminate the consequences of the wrong
assumption. We want the actual consequences of wrong assumptions
to be retracted, leaving consequences of other assumptions believed.
This is rather hard to arrange in an expression-oriented language
system.

With propagators we have escaped the control structure based on
evaluation of expressions, at the cost of thinking of the propagators as
independent machines running in parallel. Because a propagator cell
may contain a value set whose elements are layered values, we can
associate a support set with each value. In the propagator system a
value is believed only when all of the premises in its support set are
believed; and only believed values are propagated. In this way we have
the ability to switch world views by modulating the belief status of
each premise independently.

Some combinations of premises are contradictory. A contradiction
is discovered when the system tries to merge two incompatible fully
supported values, thus deriving a contradiction object. The
contradiction object has a support set with those premises that imply
the contradiction.

To make this work we introduce an amb-like choice propagator,
which makes assumptions about the value of a cell that it controls.
Each assumption is supported by a hypothetical premise created by
the choice propagator that it may assert or retract. The propagator
network computes the consequences of alternative assignments of the
values of the assumptions made by the choice propagators in the
network until a consistent assignment is found.



An example: Pythagorean triples
Consider the problem of finding the Pythagorean triples for natural
numbers up to ten. (We considered a similar problem on page 272.
Here we are setting up an even dumber algorithm!). We can formulate
this as a propagator problem:

(define (pythagorean)

  (let ((possibilities ’(1 2 3 4 5 6 7 8 9 10)))

    (let-cells (x y z x2 y2 z2)

      (p:amb x possibilities)

      (p:amb y possibilities)

      (p:amb z possibilities)

      (p:* x x x2)

      (p:* y y y2)

      (p:* z z z2)

      (p:+ x2 y2 z2)

      (list x y z))))

This code constructs a propagator network with three multiplier
propagators and an adder propagator that will be satisfied if the values
in cells x, y, and z are a Pythagorean triple. Each of these cells is
connected to a choice propagator, created by p:amb, that will choose
an element from possibilities.

To run this we must first initialize the propagator system:

(initialize-scheduler)

We can now build the propagator network and extract all of the triples
from it. The procedure pythagorean constructs the propagator
network and returns a list of the three cells of interest. The procedure
run turns on the scheduler, thus running the network. While running,
the choice propagators propose values of x, y, and z until either an
unresolvable contradiction is found or the network becomes quiescent.
If no contradiction is found, run returns done, and the base values of
the strongest values of each of the interesting cells are printed. Then
that combination of values is rejected, and the loop is continued with a
new call to run.

(let ((answers (pythagorean)))

  (let try-again ((result (run)))

    (if (eq? result 'done)

        (begin



          (pp (map (lambda (cell)

                     (get-base-value

                      (cell-strongest cell)))

                   answers))

          (force-failure! answers)

          (try-again (run)))

        result)))

(3 4 5)

(4 3 5)

(6 8 10)

(8 6 10)

(contradiction #[cell x])

7.5.1 Dependency-directed backtracking
Dependency-directed backtracking is a powerful technique that
optimizes a backtracking search by avoiding asserting a set of
premises that support any previously discovered contradiction.13 The
dependency-directed backtracking strategy we use is based on the
concept of a nogood set—a set of premises that cannot all be believed
at the same time, because their conjunction has been found to support
a contradiction. When a cell contains two or more contradictory
values, the union of the support sets of those values is a nogood set.

When a contradiction is detected, the nogood set for that
contradiction is saved to let the backtracker know not to try that
combination again. To make it easy for the backtracking mechanism,
the nogood set is not stored directly: it is distributed to each premise
in the nogood set. Each premise gets a copy of the set with itself
removed. For example, if the nogood set is {A B C ... }, then the
premise A gets the set {B C ... }, the premise B gets the set {A C ... },
and so on. For any given premise, the list of all the partial nogood sets
that have been accumulated from contradictions that the premise has
participated in can be obtained with the premise-nogoods accessor.

Once the nogood set is saved, the backtracker chooses a
hypothetical premise from the nogood set (if any) and retracts it. The
retraction activates the propagators that are neighbors of cells with
values previously supported by that hypothetical, including the
propagator that originally asserted that hypothetical, causing that
propagator to assert a different hypothetical, if possible. If there are no
hypothetical premises in the nogood set, the backtracker has no



options, so it returns a failure.
Of course there is a lot of bookkeeping that needs to be done to

make this work. Let's understand how that can be implemented.

Hypotheticals are made and controlled by binary-amb
The simplest choice propagator is constructed by binary-amb. The
result of calling binary-amb on a cell is a binary-amb propagator with
the cell as both an input and an output. A binary-amb propagator
modulates the value of the cell to be either true or false, until a
consistent assignment is found.

The procedure binary-amb introduces two new premises, which are
marked as hypothetical premises. A hypothetical premise is one whose
belief is allowed to be automatically varied as needed.

The binary-amb procedure initializes the cell with a contradiction:
the procedure make-hypotheticals creates both a true value and a
false value, each supported by a new hypothetical premise, and adds
both values to the content of the cell. Adding these values activates the
cell, calling its test-content! procedure, which starts the
contradiction-handling mechanism, which ultimately alerts the
binary-amb propagator of the unhappy cell. The contradiction will
then be fixed by the binary-amb propagator's activate! procedure
amb-choose:

(define (binary-amb cell)

  (let ((premises (make-hypotheticals cell ’(#t #f))))

    (let ((true-premise (car premises))

          (false-premise (cadr premises)))

      (define (amb-choose)

        (let ((reasons-against-true

               (filter all-premises-in?

                       (premise-nogoods true-premise)))

              (reasons-against-false

               (filter all-premises-in?

                       (premise-nogoods false-premise))))

          (cond ((null? reasons-against-true)

                 (mark-premise-in! true-premise)

                 (mark-premise-out! false-premise))

                ((null? reasons-against-false)

                 (mark-premise-out! true-premise)

                 (mark-premise-in! false-premise))



                (else

                 (mark-premise-out! true-premise)

                 (mark-premise-out! false-premise)

                 (process-contradictions

                  (pairwise-union reasons-against-true

                                  reasons-against-false)

                  cell)))))

      (let ((me (propagator (list cell) (list cell)

                            amb-choose ’binary-amb)))

          (set! all-amb-propagators

                (cons me all-amb-propagators))

          me))))

The amb-choose procedure uses the premise nogoods to determine
whether the premise supporting the true value or the premise
supporting the false value may be believed. Each element of the
premise-nogoods of a premise is a set of premises such that if they
are all believed, the premise cannot be believed. So if amb-choose
finds any fully supported premise nogood for a premise, that premise
cannot be believed.

If the premise supporting the true value or the premise supporting
the false value is believable, amb-choose asserts true or false
respectively. If neither is believable, it defers to higher-level
contradiction processing (process-contradictions) in the hope that
after the beliefs in other premises are modulated, it may be possible to
assert true or false when this propagator is reactivated. The argument
given to process-contradictions, constructed by pairwise-union,
is a set of nogoods. Each of these nogoods is the union of a set of
premises that rule out the choice of true and a set of premises that rule
out a choice of false. Thus, any one of these nogoods would prevent the
choice of either alternative.14

(define (pairwise-union nogoods1 nogoods2)

  (append-map (lambda (nogood1)

                (map (lambda (nogood2)

                       (support-set-union nogood1 nogood2))

                     nogoods2))

              nogoods1))

Learning from contradictions
The procedure process-contradictions saves all of the nogoods it



received, distributing the information in the nogoods to the premise
nogoods of the premises. It then chooses a nogood to disbelieve by
retracting one of its hypothetical premises, if there are any.

(define (process-contradictions nogoods complaining-cell)

  (update-failure-count!)

  (for-each save-nogood! nogoods)

  (let-values (((to-disbelieve nogood)

                (choose-premise-to-disbelieve nogoods)))

    (maybe-kick-out to-disbelieve nogood complaining-cell)))

The procedure save-nogood! augments the premise-nogoods of
each premise in the given nogood set with the set of other premises it
is incompatible with. This is how the system learns from its past
failures. The premise being updated is not included in its own premise
nogood sets, because a premise may not be incompatible with itself.

(define (save-nogood! nogood)

  (for-each (lambda (premise)

              (set-premise-nogoods! premise

                (adjoin-support-with-subsumption

                 (support-set-remove nogood premise)

                 (premise-nogoods premise))))

            (support-set-elements nogood)))

The new premise nogood may either subsume or be subsumed by one
of the existing premise nogoods; minimal premise nogoods are most
useful.

Resolving the contradiction
A contradiction is resolved by retracting one of the premises in the
nogood set that supports the contradiction. The only premises that can
be retracted are the hypotheticals, which are asserted “for the sake of
argument.” If there is more than one nogood set supporting a
contradiction, we choose one with the smallest number of
hypotheticals, because disbelieving a small nogood set rules out more
possiblities than disbelieving a nogood set with a larger number of
hypotheticals.

(define (choose-premise-to-disbelieve nogoods)

  (choose-first-hypothetical



   (car (sort-by nogoods

          (lambda (nogood)

            (count hypothetical?

                   (support-set-elements nogood)))))))

However, the choice of which hypothetical from the selected nogood
set to reject is not apparent. Here we arbitrarily choose the first
hypothetical premise available in the nogood set.

(define (choose-first-hypothetical nogood)

  (let ((hyps (support-set-filter hypothetical? nogood)))

    (values (and (not (support-set-empty? hyps))

                 (car (support-set-elements hyps)))

            nogood)))

The procedure maybe-kick-out finishes the job of resolving the
contradiction. If the chooser was able to find a suitable hypothesis to
disbelieve, then that hypothesis is retracted and propagation continues
normally. Otherwise, the propagation process is stopped and the user
is informed about the contradiction.

(define (maybe-kick-out to-disbelieve nogood cell)

  (if to-disbelieve

      (mark-premise-out! to-disbelieve)

      (abort-process (list ’contradiction cell))))

Contradictions discovered in a cell
If in the process of adding content to a cell a contradiction is
discovered, the unhappy cell calls handle-cell-contradiction with
itself as the argument. At that moment the strongest value in the cell is
the contradiction object, and the support of the contradiction object is
the irritating nogood set. This can be handed off to process-
contradictions to deal with.

(define (handle-cell-contradiction cell)

  (let ((nogood (support-layer-value (cell-strongest cell))))

    (process-contradictions (list nogood) cell)))

This is all that needs to be done to support dependency-directed
backtracking.



Non-binary amb
Although binary-amb can be used in the formulation of many
problems, most choices are not binary. It is possible to construct an n-
ary choice mechanism from binary-amb by building a circuit of
conditional propagators controlled by cells whose true or false values
are modulated by binary-amb propagators, but this is very inefficient
and introduces lots of extra machinery. So we provide a native n-ary
choice mechanism with p:amb. The procedure p:amb is analogous to
binary-amb. For binary-amb there are exactly two choices, #t or #f,
for the value in the cell, and each is supported by a hypothetical
premise. When p:amb is applied to a cell and a list of possible values,
the procedure make-hypotheticals adds those values to the cell, each
supported by a new hypothetical premise.

When the propagator constructed by p:amb is activated, the
procedure amb-choose is called. It first tries to find a hypothetical
premise, among its hypotheticals, that is not ruled out by its premise-
nogoods. If there is one, it marks that premise in and marks all of the
other premises out, thus choosing the value associated with that
premise as the value of the cell. If none of the hypothetical premises
can be believed, it marks all of its premises out and makes a new set of
nogoods to pass to process-contradictions, which will retract a
hypothetical premise from one of those nogoods, if possible. The
generalization of the procedure pairwise-union to take more than
two setsis cross-product-union. As before, this is a resolution step.

(define (p:amb cell values)

  (let ((premises (make-hypotheticals cell values)))

    (define (amb-choose)

      (let ((to-choose

             (find (lambda (premise)

                     (not (any all-premises-in?

                               (premise-nogoods premise))))

                   premises)))

        (if to-choose

            (for-each (lambda (premise)

                        (if (eq? premise to-choose)

                            (mark-premise-in! premise)

                            (mark-premise-out! premise)))

                      premises)

            (let ((nogoods



                   (cross-product-union

                    (map (lambda (premise)

                           (filter all-premises-in?

                             (premise-nogoods premise)))

                         premises))))

              (for-each mark-premise-out! premises)

              (process-contradictions nogoods cell)))))

      (let ((me (propagator (list cell) (list cell)

                            amb-choose ’amb)))

        (set! all-amb-propagators

              (cons me all-amb-propagators))

        me)))

Choice propagators built with p:amb introduce only as many
hypothetical premises as there are choices. Constructions for n > 2
choices based on binary-amb introduce about twice that many
premises.

7.5.2 Solving combinatorial puzzles
To demonstrate the use of dependency-directed backtracking to solve
combinatorial puzzles efficiently, consider the famous “multiple
dwelling” puzzle:[29]

Baker, Cooper, Fletcher, Miller, and Smith live on different floors
of an apartment house that has only five floors. Baker does not live
on the top floor. Cooper does not live on the bottom floor. Fletcher
does not live on either the top or the bottom floor. Miller lives on a
higher floor than does Cooper. Smith does not live on a floor
adjacent to Fletcher's. Fletcher does not live on a floor adjacent to
Cooper's. Where does everyone live?

We can set this up as a propagator problem. Here is a very
unsophisticated formulation of the problem:

(define (multiple-dwelling)

  (let-cells (baker cooper fletcher miller smith)

    (let ((floors ’(1 2 3 4 5)))

      (p:amb baker floors)  (p:amb cooper floors)

      (p:amb fletcher floors)  (p:amb miller floors)

      (p:amb smith floors)

      (require-distinct

       (list baker cooper fletcher miller smith))



      (let-cells ((b=5 #f)   (c=1 #f)   (f=5 #f)

                  (f=1 #f)   (m>c #t)   (sf #f)

                  (fc  #f)   (one 1)    (five 5)

                  s-f   as-f   f-c    af-c)

        (p:= five baker b=5)  ;Baker is not on 5.

        (p:= one cooper c=1)  ;Cooper is not on 1.

        (p:= five fletcher f=5)  ;Fletcher is not on 5.

        (p:= one fletcher f=1)  ;Fletcher is not on 1.

        (p:> miller cooper m>c)  ;Miller is above Cooper.

        (c:+ fletcher s-f smith)  ;Fletcher and Smith

        (c:abs s-f as-f)  ; are not on

        (p:= one as-f sf)  ; adjacent floors.

        (c:+ cooper f-c fletcher) ;Cooper and Fletcher

        (c:abs f-c af-c)  ; are not on

        (p:= one af-c fc)  ; adjacent floors.

        (list baker cooper fletcher miller smith)))))

This says that Baker, Cooper, Fletcher, Miller, and Smith all choose to
live on one of the five floors, and their choices must be distinct. We
then see the constraints on their choices represented as a propagator
circuit. Some cells, such as b=5, are initialized to a boolean value.
Thus, the line (p:= five baker b=5) represents the constraint that
Baker does not live on the fifth floor. The constraint that Cooper and
Fletcher do not live on adjacent floors is implemented by the
assignment of fc to #f and the last three constraints.

To use the propagator system we need to define all the primitive
propagators, with the appropriate layering of the data:

(define (setup-propagator-system arithmetic)

  (define layered-arith

    (extend-arithmetic layered-extender arithmetic))

  (install-arithmetic! layered-arith)

  (install-core-propagators! merge-value-sets

                             layered-arith

                             layered-propagator-projector))

This rather complicated setup procedure gives the information
required to build and install the propagators with an arithmetic,
layered with premises that can be tracked and reasons that are
available for debugging. The default setup, when the propagator
system is loaded, is for numerical data:

(setup-propagator-system numeric-arithmetic)



We are now in a position to run our puzzle example:

(initialize-scheduler)

(define answers (multiple-dwelling))

(run)

(map (lambda (cell)

       (get-base-value (cell-strongest cell)))

     answers)

;Value: (3 2 4 5 1)

*number-of-calls-to-fail*

;Value: 106

We see the (correct) result: the floor on which each protagonist
lives. We also see that it takes roughly 100 failed assignments to find a
correct assignment.15 It turns out that this assignment is unique: there
are no other assignments consistent with the constraints given.

Notice that the total number of unconstrained assignments is 55 =
3125, but we are solving this with only about 100 trials. We are able to
do this because the system learns from its mistakes: For each failure it
accumulates information about which sets of premises cannot be
simultaneously believed. Correctly using this information prevents the
investigation of paths that are hopeless given the results of previous
experiments.



Exercise 7.5: Yacht name puzzle

Formulate and solve the following puzzle using propagators.16

Mary Ann Moore's father has a yacht and so has each of his four
friends: Colonel Downing, Mr. Hall, Sir Barnacle Hood, and Dr.
Parker. Each of the five also has one daughter and each has named
his yacht after a daughter of one of the others. Sir Barnacle's yacht
is the Gabrielle, Mr. Moore owns the Lorna; Mr. Hall the Rosalind.
The Melissa, owned by Colonel Downing, is named after Sir
Barnacle's daughter. Gabrielle's father owns the yacht that is
named after Dr. Parker's daughter. Who is Lorna's father?



Exercise 7.6: Multiple-dwelling puzzle
It is easy to formulate the multiple-dwelling problem for the amb
evaluator of chapter 5.4. In fact it is easier than for the propagator
system, because we can think and write in terms of expressions.
Indeed, you will be able to write constraints like the fact that Fletcher
and Cooper do not live on adjacent floors as something like:

(require (not (= (abs (- fletcher cooper)) 1)))

rather than

   (c:+ cooper f-c fletcher)

   (c:abs f-c af-c)

   (p:= one af-c fc)

where cells like f-c, af-c, and fc must be declared and one and fc are
initialized. This is because the propagation system is a general wiring-
diagram system rather than an expression system.

a. Formulate and solve the multiple-dwelling problem using the
amb evaluator of section 5.4. Instrument the system to determine
the number of failures. How many failures does it take?

b. Write a small compiler that converts constraints written as
expressions into propagator diagram fragments. You will find that
this is very easy. We made a first stab at this in exercise 7.1 on page
340. But here we really want to make a translator for code from
section 5.4 to a propagator target. Demonstrate that your
compilation gets the correct answer.

c. How many failures are needed to solve the problem with the
propagator diagram that you compiled into? If it takes more than
about 200 failures you compiled into very bad code!



Exercise 7.7: Card game puzzle revisited
Redo exercise 5.17 using propagators.



Exercise 7.8: Type inference
In section 4.4.2 we built a type-inference engine as an example of the
application of unification matching. In this exercise (which is really a
substantial project) we implement type inference taking advantage of
propagation.

a. Given a Scheme program, construct a propagation network with
a cell for every locus that is useful to type. Each such cell will be the
repository of the type information that will be accumulated about
the type information at that locus in the program. Construct
propagators that connect the cells and impose the type constraints
implied by the program structure. Use unification match as the
cell-merge operation. The unification may yield a contradiction if
the program cannot be typed.

b. There may be some cells of a program where a type is not
sufficiently constrained by the types of the neighboring cells.
However, propagation can be stimulated by dropping a general
type variable into such a cell and allowing that variable to
accumulate constraints by propagation. This is called “plunking.”
Try it.

c. In hard cases a type inference may require making guesses
(using hypotheticals) and backtracking on discovery of
contradictions. Show cases where this is necessary.

d. Tracking of premises and reasons enables the construction of
informative error comments, but to do this you must associate each
program locus with its cell so that things that are learned by
propagation can be related to the program being annotated. You
may use any kind of “sticky note” you like to associate the locus
bidirectionally with the cell. In any case, try to make good
explanations about why a particular locus has the type that was
determined, or why a program could not be consistently typed.

e. Is this implementation of type inference practical? Why or why
not? If not, how can it be improved?



A moral of this story
Solving combinatorial puzzles is fun, but it is not the real value of what
we have done. Indeed, “SAT solvers” are important for solving real-
world problems of this kind. But there is a deeper message here for the
design of computational systems. By generalizing our programming
from expression structures to wiring diagrams (which can be
inconvenient—but that can be mitigated with compiling) we have
made it possible to smoothly integrate nondeterministic choice into
programs in a natural and efficient way. We can introduce
hypotheticals, which provide alternative values supported by
propositions that may be discarded without pain. This gives us the
freedom to treat things like quadratic equations correctly. They really
have two solutions, and any computation based on a choice of one
solution may decide to reject it, while the other solution may lead,
after a long computation, to an acceptable outcome. For example,
given that p:sqrt computes the traditional positive square root of a
real number, we can build a directional propagator constructor
p:honest-sqrt, with input cell x∧2 and output cell x, that gives its
users a (hidden) choice of square roots:

(define-p:prop (p:honest-sqrt (x∧2) (x))

  (let-cells (mul +x)

    (p:amb mul ’(-1 +1))

    (p:sqrt x∧2 +x)

    (p:* mul +x x)))

What is important here is that such choices may be introduced without
arranging that the enclosing machinery knows how to handle the
ambiguity. For example, the constraint propagator that relates
numbers to their squares can just use p:honest-sqrt:

(define-c:prop (c:square x x∧2)

  (p:square x x∧2)

  (p:honest-sqrt x∧2 x)))



7.6 Propagation enables degeneracy

In the design of any significant system there are many implementation
plans proposed for every component at every level of detail. However,
in the system that is finally delivered this diversity of plans is lost, and
usually only one unified plan is adopted and implemented. As in an
ecological system, the loss of diversity in the traditional engineering
process has serious consequences.

We rarely build degeneracy into programs, partly because it is
expensive and partly because we traditionally have supplied no formal
mechanisms for mediating its use. But the propagation idea provides a
natural mechanism to incorporate degeneracy. The use of partial
information structures in cells (introduced by Radul and Sussman
[99]) allows multiple, perhaps overlapping, sources of information to
be merged. We illustrated this with intervals in the stellar distance
example in section 7.1. But there are many ways to merge partial
information: partially specified symbolic expressions can be merged
with unification, as shown in section 4.4.2. So the idea of partially
specified information is not restricted to systems built with
propagators, but if this is done in a propagator system, as proposed in
exercise 7.8 on page 368, we have a paradigm for combining the
contributions of multiple independent mechanisms. Similarly, we
considered another idea from the AI problem-solving world for
degenerate designs: goal-directed invocation. The idea is that instead
of specifying “how” we want a goal accomplished, by naming a
procedure to accomplish it, we specify “what” we want to accomplish,
and we link procedures that can accomplish that goal with the goal.
This linkage is often done with pattern matching, but that is accidental
rather than essential.17 If there is more than one way to accomplish the
goal, then the choice of an appropriate procedure is a choice point that
can be registered for backtracking. But chronological backtracking,
constrained by the control flow of an expression-oriented language, is
extremely inefficient. We must break out of the expression-evaluation
structure to make dependency-directed backtracking work well, and



propagation is one way to go. We still have a potentially exponential
search, but the combinatorics are significantly reduced by eliminating
many bad choices using nogood sets learned from experience.

Of course, besides using a backtracking search for choosing a
particular way to accomplish a goal, there are other ways that the goal
can invoke degenerate methods. For example, we may want to run
several possible ways to solve a problem in parallel, choosing the one
that terminates first.

Suppose we have several independently implemented procedures
all designed to solve the same (imprecisely specified) general class of
problems. Assume for the moment that each design is reasonably
competent and actually works correctly for most of the problems that
might be encountered in actual operation. We know that we can make
a more robust system by combining the given procedures into a larger
system that independently invokes each of the given procedures and
compares their results, choosing the best answer on every problem. If
the combination has independent ways of determining which answers
are acceptable we are in very good shape. But even if we are reduced to
voting, we get a system that can reliably cover a larger space of
solutions. Furthermore, if such a system can automatically log all cases
where one of the designs fails, the operational feedback can be used to
improve the performance of the procedure that failed.

This degenerate design strategy can be used at every level of detail.
Every component of each subsystem can itself be degenerately
designed. If the components are shared among the subsystems, we get
a controlled redundancy that is quite powerful. However, we can do
even better. We can provide a mechanism for consistency checking of
the intermediate results of the independently designed subsystems,
even when no particular value in one subsystem exactly corresponds to
a particular value in another subsystem.

For a simple example, suppose we have two subsystems that are
intended to deliver the same result, but computed in completely
different ways. Assume that the designers agree that at some stage in
one of the designs, the product of two of the variables in that design
must be the same as the sum of two of the variables in the other
design.18 There is no reason why this predicate should not be
computed as soon as all of the four values it depends upon become



available, thus providing consistency checking at run time and
powerful debugging information to the designers. This can be
arranged using a locally embedded constraint network.

 

1 Constraint propagation was introduced by David Waltz in his
doctoral thesis on the interpretation of line drawings [125]. Gerald
Jay Sussman and Richard Stallman developed electrical circuit
analysis tools based on constraint propagation [119, 114]. Eugene
Freuder [39] transformed the constraint-programming ideas into a
major intellectual endeavor, with its own journal [24]. Guy Steele's
PhD thesis [116] showed how one could construct a programming
language based on constraints.

2 See [127], page 71.

3 There is also a “reason” for the value, indicated by the list beginning
with because. In this case the value in the Vega-parallax-
distance cell was derived by division of the contents of the AU cell
by the contents of the t cell in the propagator made by
c:parallax<->distance. The directional division propagator p:/
was part of the constraint propagator c:*, which was itself part of
the c:parallax<->distance constraint propagator. These reasons
can get very verbose. We will omit the “because” part of the results
of inquire when they are not helpful.By chasing these reasons
recursively one can get a very verbose explanation of the derivation
of a value. These reasons are the justifications we discussed in
section 6.4.2.

4 We are lying here! Actually the measurement of Gatewood and de
Jonge [43] is a bit different. The center of their measurement was
130 milliarcseconds rather than the 131 that we quote here. We
fudged this to make it possible to illustrate a computational point a
bit later.

5 Actually there are some problems with the Hipparcos data.
Specifically, the distances measured by Hipparcos to some very



bright clusters, such as the Pleiades, are apparently not consistent
with better measurements made by very long baseline radio
interferometry. But this discrepancy does not damage other
Hipparcos measurements.

6 This is why we fudged Gatewood and de Jonge's measurement. Their
result would not overlap with the Hipparcos result if we quoted it
correctly. In fact, the Hipparcos measurement would be entirely
contained in the Gatewood and de Jonge error bars.

7 This admittedly weird system descends from the work of the ancient
Greek astronomer Hipparchus (c. 190 BCE – c. 120 BCE). He
assigned a numerical brightness to each star in his catalog. He
called the brightest stars first magnitude, less bright ones second
magnitude, and the dimmest sixth magnitude. The ESA's
Hipparcos Space Astrometry Mission (see page 335) was named in
honor of Hipparchus.

8 This is a pretty ugly language, because we need to name and create
cells for all of the intermediate parts of an expression. There are
many ways to make this pretty, but the concepts are clearer if we
start out with this crude but very concrete language of wiring
diagrams. It is easy to write a small compiler that converts
constraints written as algebraic expressions to propagator diagram
fragments. (See exercise 7.1 on page 340 and exercise 7.6 on page
367.)

9 This is an essential insight in Alexey Radul's PhD thesis [99, 100].

10 We are glossing over the serious problem of determining the
equivalence of inexact quantities. No global notion of equivalence
can represent the criteria for equivalence without additional local
information. To address this problem we could provide a local
equivalence predicate for each cell, with a default value for exact
quantities.

11 There is a very bad idea in our implementaton. A change of the
belief status of a premise is implemented as a global operation—this
is never a good idea in a simulation of a parallel process! A better



implementation would propagate the change of belief by local
processes, similar to the way the values that they support are
propagated. But we didn't do this—sorry!

12 What is the best choice is actually a rather complex judgment. If
one supported value is more specific than another, for example a
narrower interval, this is a better choice. Also, if a value has fewer
premises in its support set than an “equivalent” value, it is better
because it requires fewer premises to be believed. This is
implemented by the mechanism of merging value sets, which we
will describe in section 7.4.3.

13 Dependency-directed backtracking was first introduced by Richard
Stallman and Gerald Jay Sussman in the context of electrical circuit
analysis [114]. A very similar technique, “clausal learning,” was
developed in the context of logic by Karl Lieberherr [84]. Clausal
learning is now used in the best SAT solvers. Ramin Zabih, David
McAllester, and David Chapman showed one way to build this
technique into Lisp code [132]. Guy Steele showed an elegant way
to incorporate dependency-directed backtracking into a constraint
language [116]. Building on the work of Jon Doyle [30] and David
McAllester [88], Ken Forbus and Johan deKleer elaborated the
theory and practice of dependencies and “truth-maintenance
systems” [36], a general way to think about dependencies and
backtracking. The way we implement dependency-directed
backtracking in this book was developed by Alexey Radul and
Gerald Jay Sussman [99, 100].

14 This use of the procedure pairwise-union implements the cut rule
of logic, which is a generalization of modus ponens. In
propositional logic the cut rule is written (A ∨ B) ∧ (¬B ∨ C) ⊦ (A
∨ C). This rule, combined with unification (section 4.4), is the basis
of the famous resolution theorem proving algorithm invented by
Robinson [104].

15 The precise number of failed choices of assignments is very
dependent on the details of the computation. In this problem the
number of failed choices can be anywhere from about 60 to about



200, depending on the order of propagator activations. But for this
formulation of this problem the average number of failures is about
110.

16 This puzzle is taken from a booklet called Problematical
Recreations, published in the 1960s by Litton Industries, where it is
attributed to the Kansas State Engineer.

17 Pattern-directed invocation was introduced by Carl Hewitt in
PLANNER [56] and by Alain Colmerauer in Prolog [78]. This idea
has spread to many other systems and languages.

18 This is actually a real case. In variational mechanics the sum of a
Lagrangian for a system and the Hamiltonian related to it by a
Legendre transformation is the inner product of the generalized
momentum 1-form and the generalized velocity vector [121].



8 
Epilogue

Serious engineering is only a few thousand years old. Our attempts at
deliberately producing very complex robust systems are immature at
best. We have yet to glean the lessons that biological evolution has
learned over the last few billion years.

We have been more concerned with efficiency and correctness than
with the kind of robustness of biological systems that comes from
optimizing evolvability, flexibility, and resistance to attack. This is
sensible for developing mission-critical systems that have barely
enough resources to perform their function. However, the rapid
advance of microelectronics has alleviated the resource problem for
most applications. Our increasing dependence on computational and
communications infrastructure, and the development of ever more
sophisticated attacks on that infrastructure, make it imperative that
we turn our attention to robustness.

We are not advocating biomimetics; but observations of biological
systems give us hints about how to incorporate powerful principles of
robustness into our engineering practice. Many of these principles are
in direct conflict with the established practices of optimization of
efficiency and of the ability to prove correctness. In this book we
deliberately violate these established practices to explore the
possibilities of optimizing for flexibility. A motivation of our approach
is the observation that most systems that have survived the test of time
are built as an assembly of domain-specific languages, each of which is
appropriate to make some parts of the system easy to construct.

As part of the effort to build artificially intelligent symbolic systems,
the AI community has incidentally developed technological tools that
can be used to support principles of flexible and robust design. For
example, rather than thinking of backtracking as a method of



organizing search, we can employ it to increase the general
applicability of components in a complex system that organizes itself
to meet externally imposed constraints. We believe that by pursuing
this new synthesis we will obtain better hardware and software
systems.

We started out in chapter 2 with some rather unobjectionable
techniques that are universally applicable. We introduced the strategy
of building systems of combinators—libraries of parametric parts that
have standardized interfaces. Such parts can be combined in many
ways to meet a great variety of needs. We demonstrated how this idea
can be used to simplify the construction of a language of regular-
expression matchers. We introduced systems of wrappers that allow us
to adapt parts to applications with different standards than the parts
were built to, and we used this to make a language of unit-conversion
wrappers. We progressed to build a rule interpreter for a language to
express the rules of board games like checkers.

In chapter 3 we embarked on an exciting and dangerous adventure:
we investigated what can be done if we are allowed to modulate the
meanings of the primitive procedures of a language. We extended
arithmetic to handle symbolic expressions and functions, as well as
numbers. We created extensible generic procedures and used the
extension mechanism to integrate forward-mode automatic
differentiation into our arithmetic. This kind of extension is
dangerous, but if we are careful, we can make old programs have new
abilities without losing their old abilities. To make this strategy
efficient and even more powerful, we proceeded to explore user-
defined types, with declarable subtype relationships, and we used that
to make a simple but easily extensible adventure game.

Pattern matching and pattern-directed invocation, introduced in
chapter 4, are crucial techniques for erecting domain-specific
languages. We started with term-rewriting rules for algebraic
simplification. We then showed an elegant strategy for compiling
patterns into a composition of elementary pattern matchers in a
system of pattern-matching combinators. We then expanded our
pattern-matching tools to allow pattern variables on both sides of a
match, implementing unification, which we then used to make an
elementary type-inference system. Finally, we built matchers that



match arbitrary graphs, not just expression trees, and used graphs and
graph matching to express the rules for moves in chess in an elegant
manner.

Because all sane computer languages are universal, programmers
do not have an excuse that a solution cannot be expressed in some
language. If seriously pressed, good programmers can make an
interpreter or compiler for any language they please in any language
they are stuck with. This is not very hard, but it is probably the most
powerful move a programmer can make. In chapter 5 we showed how
to make increasingly powerful languages by interpretation and
compilation. We started with a simple applicative-order interpreter for
a Scheme-like language. For extensibility, the interpreter was built on
generic procedures. We then extended it to allow procedure
definitions to declare lazy formal parameters. Next we compiled the
language to a combination of execution procedures—a system of
combinators. We then added a model of nondeterministic evaluation,
with the amb operator. Finally, we showed how by exposing the
underlying continuations we could arrange to get the power of amb in
the underlying Scheme system. In chapter 6 we began to explore
multilayer computations, based on a novel mechanism closely related
to generic procedures. For example, we modified our arithmetic so
that a program that computes numerical results from numerical
arguments could be extended, without modification, to compute the
same results, augmented with units. The units of the result are
automatically derived from the units of the inputs, and combinations
are checked for consistent units: adding 5 kilograms to 2 meters will
signal an error. We used the same layering mechanism to augment
programs to carry dependencies, so that a result automatically has
reference to the sources of the ingredients that went into making that
result.

The propagator model of chapter 7 is really a way of thinking about
the plumbing of large systems. Although, in the examples we show in
this chapter, the propagators are all simple arithmetic functions or
relations, the idea is far more general. A propagator could be hardware
or software. It could be a simple function or a huge computer doing an
enormous crunch. If it is software, it could be written in any language.
Indeed, a system of propagators does not have to be homogeneous.



Different propagators may be constructed differently. Cells may be
specialized to hold different kinds of information and they may merge
information in their own favorite way. The communication between
propagators and cells may be signals on a chip or on a global network.
All that matters is the protocol for a propagator to query a cell and to
add information to a cell.

In this book we introduced many programming ideas. It is now up
to you to evaluate them and perhaps apply them.



A 
Appendix: Supporting Software

All of the code shown in this book and the infrastructure code that
supports it can be downloaded as an archive file from
http://groups.csail.mit.edu/mac/users/gjs/sdf.tgz
The archive is organized as a directory tree, where each subdirectory
approximately corresponds with a section of this book. The software
runs in MIT/GNU Scheme version 10.1.10 or later, which can be
obtained from http://www.gnu.org/software/mit-scheme
The software uses a number of features specific to the MIT/GNU
implementation, so it won't work with other distributions. It should be
possible to port it to another distribution, but we have not tried this
and it is likely to require some work. Because this is free software
(licensed under the GPL) you may modify it and distribute it to others.

The software archive is a tar file called sdf.tgz, which can be
unpacked using the command

tar xf .../sdf.tgz

This tar command produces a directory sdf in whatever directory the
tar command is executed in.

The primary interface to the software archive is a management
program, which is distributed with the archive. To use this program,
start MIT/GNU Scheme and load it like this:

(load ".../sdf/manager/load")

where .../ refers to the directory in which the archive was unpacked.
The manager creates a single definition in the global environment,
called manage. Once loaded, it's not necessary to reload the manager
unless a new instance of Scheme is started.

Suppose you are working on section 4.2 “Term rewriting,” and

http://groups.csail.mit.edu/mac/users/gjs/sdf.tgz
http://www.gnu.org/software/mit-scheme


you'd like to play with the software or work on an exercise. The loader
for code in that section is stored in the subdirectory .../sdf/term-
rewriting, along with files that are specific to that section. But you do
not need to know how the loader works. (Of course, you may read the
manager code. It is pretty interesting.)

The manage command

(manage ’new-environment 'term-rewriting)

will create a new top-level environment, load all of the necessary files
for that section, and move the read-eval-print loop into that
environment. After you are done with that section, you can use the
manage command to load the software for another section by replacing
term-rewriting with the name corresponding to the new section.

Usually, the name of a subdirectory can be used as an argument to
(manage ’new-environment ...). When used in this context, the
subdirectory name is called a flavor. However, some of the
subdirectories have multiple flavors, and in those cases the available
flavor names differ from the subdirectory names.

The correspondence between sections of the book and
subdirectories/flavors in the archive can be found in the file

.../sdf/manager/sections.scm

In addition, there are two special subdirectories: common holds shared
files that are used extensively; and manager holds the implementation
of manage.

The software management program manage has many other useful
abilities. Among them are managing working environments by name,
finding the files that define a name and those that refer to it, and
running unit tests. For more information refer to the documentation
that is included in the manager subdirectory.

Using the software may require additional steps that are not spelled
out in the book text, such as initialization. Every subdirectory contains
tests: any file named test-FOO.scm is a “standard” test, using a
testing framework similar to those of other programming languages.
Additionally, the load-spec files in each subdirectory may contain
references to tests, marked with the inline-test? symbol, that use a
different testing framework that is similar to read-eval-print loop



transcripts. Look there for examples of how to run the programs.



B 
Appendix: Scheme

Programming languages should be designed not
by piling feature on top of feature, but by
removing the weaknesses and restrictions that
make additional features appear necessary.
Scheme demonstrates that a very small number
of rules for forming expressions, with no
restrictions on how they are composed, suffice to
form a practical and efficient programming
language that is flexible enough to support most
of the major programming paradigms in use
today.
IEEE Standard for the Scheme Programming
Language [61], p. 3

Here we give an elementary introduction to the Scheme dialect of Lisp.
For a longer introduction see the textbook Structure and
Interpretation of Computer Programs (SICP) [1].

For a more precise explanation of the language see the IEEE
standard [61] and the Seventh Revised Report on the Algorithmic
Language Scheme (R7RS) [109]

Some of the programs in this book depend on nonstandard features
in MIT/GNU Scheme; for documentation of this system see the
MIT/GNU Scheme Reference Manual [51]. Also, for Scheme features
that are documented elsewhere the index to the Reference Manual
provides pointers to the appropriate documents.



B.1 Essential Scheme

Scheme is a simple programming language based on expressions. An
expression names a value. For example, the numeral 3.14 names an
approximation to a familiar number, and the numeral 22/7 names
another approximation to it. There are primitive expressions, such as
numerals, that we directly recognize, and there are compound
expressions of several kinds.

Compound expressions are delimited by parentheses. Those that
start with distinguished keywords, such as if, are called special forms.
Those that are not special forms, called combinations, denote
applications of procedures to arguments.

Combinations
A combination—also called a procedure application—is a sequence of
expressions delimited by parentheses:

(operator operand-1 ... operand-n)

The first subexpression in a combination, called the operator, is taken
to name a procedure, and the rest of the subexpressions, called the
operands, are taken to name the arguments to that procedure. The
value returned by the procedure when applied to the given arguments
is the value named by the combination. For example,

(+ 1 2.14)

3.14

(+ 1 (* 2 1.07))

3.14

are both combinations that name the same number as the numeral
3.14.1 In these cases the symbols + and * name procedures that add
and multiply, respectively. If we replace any subexpression of any
expression with an expression that names the same thing as the
original subexpression, the thing named by the overall expression



remains unchanged.
Note that in Scheme every parenthesis is essential: you cannot add

extra parentheses or remove any.

Lambda expressions
Just as we use numerals to name numbers, we use lambda expressions
to name procedures.2 For example, the procedure that squares its
input can be written:

(lambda (x) (* x x))

This expression can be read: “The procedure of one argument, x,
that multiplies x by x.” Of course, we can use this expression in any
context where a procedure is needed. For example,

((lambda (x) (* x x)) 4)

16

The general form of a lambda expression is

(lambda formal-parameters body)

where formal-parameters is (usually) a parenthesized list of symbols
that will be the names of the formal parameters of the procedure.
When the procedure is applied to arguments, the formal parameters
will have the arguments as their values. The body is an expression that
may refer to the formal parameters. The value of a procedure
application is the value of the body of the procedure with the
arguments substituted for the formal parameters.3

In the example shown above, the symbol x is the only formal
parameter of the procedure named by (lambda (x) (* x x)). That
procedure is applied to the value of the numeral 4, so in the body, (* x
x), the symbol x has the value 4, and the value of the combination
((lambda (x) (* x x)) 4) is 16.

We said “usually” above because there are exceptions. Some
procedures, such as the procedure that multiplies numbers, named by
the symbol *, can take an indefinite number of arguments. We will
explain how to do that later (on page 389).



Definitions
We can use the define special form to give a name to any object. We
say that the name identifies a variable whose value is the object. For
example, if we make the definitions

(define pi 3.141592653589793)

(define square (lambda (x) (* x x)))

we can then use the symbols pi and square wherever the numeral or
the lambda expression could appear. For example, the area of the
surface of a sphere of radius 5 is

(* 4 pi (square 5))

314.1592653589793

Procedure definitions may be expressed more conveniently using
“syntactic sugar.” The squaring procedure may be defined

(define (square x) (* x x))

which we may read: “To square x multiply x by x.”
In Scheme, procedures are first-class objects: they may be passed

as arguments, returned as values, and incorporated into data
structures. For example, it is possible to make a procedure that
implements the mathematical notion of the composition of two
functions:4

(define compose

  (lambda (f g)

    (lambda (x)

      (f (g x)))))

((compose square sin) 2)

.826821810431806

(square (sin 2))

.826821810431806

One thing to notice is that the values of f and g in the returned
procedure, (lambda (x) (f (g x))), are the values of the formal
parameters of the outer procedure, (lambda (f g) ...). This is the



essence of the lexical scoping discipline of Scheme. The value of any
variable is obtained by finding its binding in the lexically apparent
context. There is an implicit context for all the variables defined
globally by the system. (For example, + is globally bound by the system
to the procedure that adds numbers.)

Using the syntactic sugar shown above for square, we can write the
definition of compose more conveniently:

(define (compose f g)

  (lambda (x)

    (f (g x))))

In MIT/GNU Scheme we can use the sugar recursively, to write:

(define ((compose f g) x)

  (f (g x)))

Sometimes it is advantageous to make a definition local to another
definition. For example, we may define compose as follows:

(define (compose f g)

  (define (fog x)

    (f (g x)))

  fog)

The name fog is not defined outside the definition of compose, so it is
not particularly useful in this case, but larger chunks of code are often
easier to read if internal pieces are given names. Internal definitions
must always precede any expressions that are not definitions in the
body of the procedure.

Conditionals
Conditional expressions may be used to choose among several
expressions to produce a value. For example, a procedure that
implements the absolute value function may be written:

(define (abs x)

  (cond ((< x 0) (- x))

        ((= x 0) x)

        ((> x 0) x)))



The conditional cond takes a number of clauses. Each clause has a
predicate expression, which may be either true or false, and a
consequent expression. The value of the cond expression is the value
of the consequent expression of the first clause for which the
corresponding predicate expression is true. The general form of a
conditional expression is

(cond (predicate-1 consequent-1)

      ...

      (prredicate-n consequent-n))

For convenience there is a special keyword else that can be used as
the predicate in the last clause of a cond.

The if special form provides another way to make a conditional
when there is only a binary choice to be made. For example, because
we have to do something special only when the argument is negative,
we could have defined abs as:

(define (abs x)

  (if (< x 0)

      (- x)

      x))

The general form of an if expression is

(if predicate consequent alternative)

If the predicate is true the value of the if expression is the value of the
consequent, otherwise it is the value of the alternative.

Recursive procedures
Given conditionals and definitions, we can write recursive procedures.
For example, to compute the nth factorial number we may write:

(define (factorial n)

  (if (= n 0)

      1

      (* n (factorial (- n 1)))))

(factorial 6)

720



(factorial 40)

815915283247897734345611269596115894272000000000

Local names
A let expression is used to give names to objects in a local context.
For example,

(define (f radius)

  (let ((area (* 4 pi (square radius)))

        (volume (* 4/3 pi (cube radius))))

    (/ volume area)))

(f 3)

1

The general form of a let expression is

(let ((variable-1 expression-1)

      ...

      (variable-n expression-n))

  body)

The value of the let expression is the value of the body expression in
the context where the variables variable-i have the values of the
expressions expression-i. The expressions expression-i may not refer
to any of the variables variable-j given values in the let expression.

A let* expression is the same as a let expression except that an
expression expression-i may refer to variables variable-j given values
earlier in the let* expression.

A slight variant of the let expression provides a convenient way to
write a loop. We can write a procedure that implements an alternative
algorithm for computing factorials as follows:

(define (factorial n)

  (let factlp ((count 1) (answer 1))

    (if (> count n)

        answer

        (factlp (+ count 1) (* count answer)))))

(factorial 6)

720

Here, the symbol factlp following the let is locally defined to be a



procedure that has the variables count and answer as its formal
parameters. It is called the first time with 1 and 1 as arguments,
initializing the loop. Whenever the procedure named factlp is called
later, these variables get new values that are the values of the operand
expressions (+ count 1) and (* count answer).

An equivalent way to express this procedure has an explicitly
defined internal procedure:

(define (factorial n)

  (define (factlp count answer)

    (if (> count n)

        answer

        (factlp (+ count 1) (* count answer))))

  (factlp 1 1))

The procedure factlp is defined locally; it exists only in the body of
factorial. Because factlp is lexically enclosed in the definition of
factorial, the value of n in its body is the value of the formal
parameter of factorial.

Compound data—lists, vectors, and records
Data can be glued together to form compound data structures. A list is
a data structure in which the elements are linked sequentially. A
vector is a data structure in which the elements are packed in a linear
array. New elements can be added to lists, but to access the nth
element of a list takes computing time proportional to n. By contrast, a
vector is of fixed length, and its elements can be accessed in constant
time. A record is similar to a vector, except that its fields are addressed
by names rather than index numbers. Records also provide new data
types, which are distinguishable by type predicates and are guaranteed
to be different from other types.

Compound data objects are constructed from components by
procedures called constructors and the components are accessed by
selectors.

The procedure list is the constructor for lists. The predicate list?
is true of any list, and false of all other types of data.5

For example,



(define a-list (list 6 946 8 356 12 620))

a-list

(6 946 8 356 12 620)

(list? a-list)

#t

(list? 3)

#f

Here #t and #f are the printed representations of the boolean values
true and false.6

Lists are built from pairs. A pair is made using the constructor
cons. The selectors for the two components of the pair are car and cdr
(pronounced “could-er”).7

(define a-pair (cons 1 2))

a-pair

(1 . 2)

(car a-pair)

1

(cdr a-pair)

2

A list is a chain of pairs, such that the car of each pair is the list
element and the cdr of each pair is the next pair, except for the last
cdr, which is a distinguishable value called the empty list and written
(). Thus,

(car a-list)

6

(cdr a-list)

(946 8 356 12 620)

(car (cdr a-list))

946

(define another-list

  (cons 32 (cdr a-list)))



another-list

(32 946 8 356 12 620)

(car (cdr another-list))

946

The lists a-list and another-list share their tail (their cdr).
The predicate pair? is true of pairs and false of all other types of

data. The predicate null? is true only of the empty list.
Vectors are simpler than lists. There is a constructor vector that

can be used to make vectors and a selector vector-ref for accessing
the elements of a vector. In Scheme all selectors that use a numerical
index are zero-based:

(define a-vector

  (vector 37 63 49 21 88 56))

a-vector

#(37 63 49 21 88 56)

(vector-ref a-vector 3)

21

(vector-ref a-vector 0)

37

The printed representation of a vector is distinguished from the
printed representation of a list by the character # before the initial
parenthesis.

There is a predicate vector? that is true of vectors and false for all
other types of data.

Scheme provides a numerical selector for the elements of a list,
list-ref, analogous to the selector for vectors:

(list-ref a-list 3)

356

(list-ref a-list 0)

6

Records are more involved, as they must be declared before they
can be constructed. A simple record declaration might be

(define-record-type point



    (make-point x y)

    point?

  (x point-x)

  (y point-y))

After this declaration, we can make and use points:

(define p (make-point 1 2))

(point? p)

#t

(point-x p)

1

(point-y p)

2

The elements of lists, vectors, and records may be any kind of data,
including numbers, procedures, lists, vectors, and records. Numerous
other procedures for manipulating lists, vectors, and records can be
found in the Scheme online documentation.

Procedures with an indefinite number of arguments
The procedures that we have seen are specified with a list of formal
parameters that are bound to the arguments that the procedure is
called with. However, there are many procedures that take an
indefinite number of arguments. For example, the arithmetic
procedure that multiplies numbers can take any number of arguments.
To define such a procedure we specify the formal parameters as a
single symbol rather than a list of symbols. The single symbol is then
bound to a list of the arguments that the procedure is called with. For
example, given a binary multiplier *:binary we can write

(define * (lambda args (accumulate *:binary 1 args)))

where accumulate is just

(define (accumulate proc initial lst)

  (if (null? lst)

      initial

      (proc (car lst)

            (accumulate proc initial (cdr lst)))))



Sometimes we want a procedure that takes some named arguments
and an indefinite number of others. In a procedure definition a
parameter list that has a dot before the last parameter name (called
dotted-tail notation) indicates that the parameters before the dot will
be bound to the initial arguments, and the final parameter will be
bound to a list of any remaining arguments. In the example of * above
there are no initial arguments, so the value of args is a list of all the
arguments. Thus, alternatively, we could define * as:

(define (* . args) (accumulate *:binary 1 args))

The procedure named by - is more interesting, as it requires at least
one argument: when given one argument - negates it; when given
more than one argument it subtracts the rest from the first:

(define (- x . ys)

  (if (null? ys)       ; Only one argument?

      (-:unary x)

      (-:binary x (accumulate +:binary 0 ys))))

This can also be written

(define -

  (lambda (x . ys)

    (if (null? ys)

      (-:unary x)

      (-:binary x (accumulate +:binary 0 ys)))))

Parameters like args and ys in the examples above are called rest
parameters because they are bound to the rest of the arguments.

Symbols
Symbols are a very important kind of primitive data type that we use
to make programs and algebraic expressions. You probably have
noticed that Scheme programs look just like lists. In fact, they are lists.
Some of the elements of the lists that make up programs are symbols,
such as + and vector.8

If we are to make programs that can manipulate programs, we need
to be able to write an expression that names such a symbol. This is
accomplished by the mechanism of quotation. The name of the symbol



+ is the expression ’+, and in general the name of an expression is the
expression preceded by a single quote character. Thus the name of the
expression (+ 3 a) is ’(+ 3 a).

We can test if two symbols are identical by using the predicate eq?.
For example, we can write a program to determine if an expression is a
sum:

(define (sum? expression)

  (and (pair? expression)

       (eq? (car expression) ’+)))

(sum? ’(+ 3 a))

#t

(sum? ’(* 3 a))

#f

Consider what would happen if we left out the quote in the
expression (sum? ’(+ 3 a)). If the variable a had the value 4, we
would be asking if 7 is a sum. But what we wanted to know was
whether the expression (+ 3 a) is a sum. That is why we need the
quote.

Backquote
To manipulate patterns and other forms of list-based syntax, it is often
useful to intersperse quoted and evaluated parts in the same
expression. Lisp systems provide a mechanism called quasiquotation
that makes this easy.

Just as we use the apostrophe character to indicate regular
quotation, we use the backquote character to indicate quasiquotation.9
We specify such a partially quoted expression as a list in which the
parts to be evaluated are prefixed with the comma character. For
example,

‘(a b ,(+ 20 3) d)

(a b 23 d)

The backquote mechanism also provides for “splicing” into a list
expression: an evaluated subexpression produces a list, which is then
spliced into the enclosing list. For example,



‘(a b ,@(list (+ 20 3) (- 20 3)) d)

(a b 23 17 d)

Consult the Scheme Report [109] for a more detailed explanation of
quasiquotation.

Effects
Sometimes we need to perform an action, such as plotting a point or
printing a value, in the process of a computation. Such an action is
called an effect.10 For example, to see in more detail how the factorial
program computes its answer, we can interpolate a write-line
statement in the body of the factlp internal procedure to print a list
of the count and the answer for each iteration:

(define (factorial n)

  (let factlp ((count 1) (answer 1))

    (write-line (list count answer))

    (if (> count n)

        answer

        (factlp (+ count 1) (* count answer)))))

When we call the modified factorial procedure we can watch the
counter being incremented and the answer being built:

(factorial 6)

(1 1)

(2 1)

(3 2)

(4 6)

(5 24)

(6 120)

(7 720)

720

The body of every procedure or let, as well as the consequent of
every cond clause, allows statements that have effects to be used. The
effect statement generally has no useful value. The final expression in
the body or clause produces the value that is returned. In this example
the if expression produces the value of the factorial.



Assignments
Effects like printing a value or plotting a point are pretty benign, but
there are more powerful (and thus dangerous) effects, called
assignments. An assignment changes the value of a variable or an
entry in a data structure. Almost everything we are computing is a
mathematical function: for a particular input it always produces the
same result. However, with assignment we can make objects that
change their behavior as they are used. For example, we can use set!
to make a device that increments a count every time we call it:11

(define (make-counter)

  (let ((count 0))

    (lambda ()

      (set! count (+ count 1))

      count)))

Let's make two counters:

(define c1 (make-counter))

(define c2 (make-counter))

These two counters have independent local state. Calling a counter
causes it to increment its local state variable, count, and return its
value.

(c1)

1

(c1)

2

(c2)

1

(c1)

3

(c2)

2

For assigning to the elements of a data structure, such as a pair, a
list, or a vector, Scheme provides:



(set-car! pair new-value)

(set-cdr! pair new-value)

(list-set! list index new-value)

(vector-set! vector index new-value)

A record may be defined to allow assignments to its fields (compare
page 388:

(define-record-type point

    (make-point x y)

    point?

  (x point-x set-x!)

  (y point-y set-y!))

(define p (make-point 1 2))

(point-x p)

1

(point-y p)

2

(set-x! p 3)

(point-x p)

3

(point-y p)

2

In general, it is good practice to avoid assignments when possible,
but if you need them they are available.12



B.2 More advanced stuff

Scheme provides many more powerful features, but we won't try to
describe them here. For example, you will probably want to know
about hash tables. In general, the best sources are the

Revised Report on the Algorithmic Language Scheme (R7RS) [109]
and the MIT/GNU Scheme Reference Manual [51]. But here are two
fairly complex features that you may need to reference while reading
this book:

Dynamic binding
We sometimes want to specify the way in which some evaluation or
action will be accomplished—for example, to specify the radix to use
when printing a number. To do this we use an object called a
parameter.

For example, the Scheme procedure number->string produces a
character string that represents a number in a given radix:

(number->string 100 2)

"1100100"

(number->string 100 16)

"64"

Suppose we want to use number->string in many places in a complex
program that we run by calling myprog, but we want to be able to
control the radix used when the program is run. We can accomplish
this by making a parameter radix with the default value 10:

(define radix (make-parameter 10))

The value of a parameter is obtained by calling the parameter with no
arguments:

(radix)

10

We define a specialized version of number->string to use instead of



number->string:

(define (number->string-radix number)

  (number->string number (radix)))

In an execution of (myprog), every call to number->string-radix will
produce a decimal string, because the default value of (radix) is 10.
However, we can wrap our program with parameterize to change the
execution to use another radix:

(parameterize ((radix 2))

  (myprog))

The syntax of parameterize is the same as the syntax of let, but it
can be used only for parameters created by make-parameter.

Bundles
MIT/GNU Scheme provides a simple mechanism for building a
collection of related procedures with shared state: a bundle. A bundle
is a procedure that delegates to a collection of named procedures: the
first argument to the bundle is the name of the delegate to use, and the
rest of the arguments are passed to the specified delegate. This is
similar to the way that some object-oriented languages work, but
much simpler, and without classes or inheritance.

A bundle is sometimes called a message-accepting procedure,
where the message type is the delegate name and the message body is
the arguments.13 This emphasizes that the bundle supports a message-
passing protocol and can be thought of as a node in a communications
network.

Here is a simple example:

(define (make-point x y)

  (define (get-x) x)

  (define (get-y) y)

  (define (set-x! new-x) (set! x new-x))

  (define (set-y! new-y) (set! y new-y))

  (bundle point? get-x get-y set-x! set-y!))

The procedure make-point defines four internal procedures, which
share the state variables x and y. The bundle macro creates a bundle



procedure, for which those procedures are the delegates.
The first argument to the bundle macro is a predicate, which is

created with make-bundle-predicate. The bundle that is created will
satisfy this predicate:

(define point? (make-bundle-predicate ’point))

(define p1 (make-point 3 4))

(define p2 (make-point -1 1))

(point? p1)

#t

(point? p2)

#t

(point? (lambda (x) x))

#f

The argument to make-bundle-predicate is a symbol that is used to
identify the predicate when debugging.

If a predicate is not needed, bundle alternatively accepts #f as a
first argument. In that case there will be no way to distinguish the
created bundle procedure from other procedures.

The remaining arguments to the bundle macro are the names of the
delegate procedures: get-x, get-y, set-x!, and set-y!. These names
are looked up in the lexical environment of the macro to get the
corresponding delegate procedures. A bundle procedure is then
created, containing an association from each name to its delegate
procedure.

When the resulting bundle procedure is called, its first argument is
a symbol that must be the name of one of the delegate procedures. The
association is used to select the named delegate procedure, which is
then called with the bundle procedure's remaining arguments as its
arguments.

It is easier to use a bundle than to describe it:

(p1 ’get-x)

3

(p1 ’get-y)

4

(p2 ’get-x)

-1

(p2 ’get-y)



1

(p1 'set-x! 5)

(p1 ’get-x)

5

(p2 ’get-x)

-1

 

1 In examples we show the value that would be printed by the Scheme
system using slanted characters following the input expression.

2 The logician Alonzo Church [16] invented λ notation to allow the
specification of an anonymous function of a named parameter:
λx[expression in x]. This is read, “That function of one argument
whose value is obtained by substituting the argument for x in the
indicated expression.”

3 We say that the formal parameters are bound to the arguments, and
the scope of the binding is the body of the procedure.

4 The examples are indented to help with readability. Scheme does not
care about extra white space, so we may add as much as we please
to make things easier to read.

5 A predicate is a procedure that returns true or false. By Scheme
cultural convention, we usually give a predicate a name ending with
a question mark (?), except for the elementary arithmetic
comparison predicates: =, <, >, <=, and >=. This is just a stylistic
convention. To Scheme the question mark is just an ordinary
character.

6 It is convenient, but irritating to some, that the conditional
expressions (if and cond) treat any predicate value that is not
explicitly #f as true.

7 These names are accidents of history. They stand for “Contents of the
Address part of Register” and “Contents of the Decrement part of
Register” of the IBM 704 computer, which was used for the first



implementation of Lisp in the late 1950s. Scheme is a dialect of
Lisp.

8 A symbol may have any number of characters. A symbol may not
normally contain whitespace or delimiter characters, such as
parentheses, brackets, quotation marks, comma, or #; but there are
special notations that allow any characters to be included in a
symbol's name.

9 On an American keyboard the backquote character “‘” is the
lowercase character on the key that has the tilde character “∼” as
the uppercase character.

10 This is computer-science jargon. An effect is a change to something.
For example, write-line changes the display by printing
something to the display.

11 It is another cultural convention that we terminate the name of a
procedure that has “side effects” with an exclamation point (!). This
warns the reader that changing the order of effects may change the
results of running the program.

12 The discipline of programming without assignments is called
functional programming. Functional programs are generally easier
to understand and have fewer bugs than imperative programs.

13 This terminology dates back to the ACTOR framework [58] and the
Smalltalk programming language [46].
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Page numbers for Scheme procedure definitions are in italics.
Page numbers followed by n indicate footnotes.

% naming convention, 152

! naming convention, 393 n

λ (lambda) calculus, 1 n

λ expression. See lambda

λ notation, 380 n

π (pi), 381

+->interval, 333

’ (quote in Scheme), 390

‘ (backquote in Scheme), 391

, (comma) in backquote, 391

- (negation or subtraction), 390

pattern-directed, 168

. in formal parameters, 267 (ex. 5.12), 389



. in printed representation of pair, 387

/ in rational constant, 47

;. See Semicolon

? for pattern variable, 158

? in predicate name, 386 n

?? for segment variable, 159

?* in graph matching, 215

() in Scheme (empty list), 387

(...) in Scheme, 380

# in Scheme vector printout, 388

# in character constant, 40

#!optional parameter, 118

#f (false), 386

#t (true), 386

a:, 274 n

a:advance, 274, 275

a:apply, 274

Abelson, Harold, 114 n, 118 n

Abstract predicate, 134

accumulate, 389

Activation policy for propagator, 347

ACTOR framework message passing, 396 n

add-arithmetics, 77

add-cell-content!, 346

add-cell-neighbor!, 346



add-content!, 344

add-streams, 255

add-to-generic-arithmetic!, 91

address-of, 218

address=, 219

advance. See a:advance; g:advance; x:advance

Adventure game, 138–152

inheritance, 140

object properties, 139, 142, 145

Algebra rules, 161–163

segment variables in, 162

Algol-60 thunk, 253 n

Alist (association list), 303

all-args, 74

all-knight-moves, 214

Alternative in conditional, 384

Alternative values, set of, 350

Alternative world views and propagation, 349–351

Alyssa P. Hacker, 44 (ex. 2.7), 277 (ex. 5.17)

amb, 271. See also Backtracking

continuation implementation, 288–292

evaluator implementation, 273–277

order of alternatives, 277, 279

(ex. 5.20), 290–292, 294 (ex. 5.23)

propagation implementation, 355–364

Amorphous Computing, 10 n



analyze, 260. See also x:analyze

analyze-amb, 277

analyze-application, 260 , 268

(ex. 5.13), 275

analyze-assignment, 263 , 276

analyze-begin, 263

analyze-definition, 264

analyze-if, 262 , 275

analyze-lambda, 262

analyze-quoted, 261

analyze-self-evaluating, 261

analyze-undoable-assignment, 276

analyze-variable, 261

Anna Logue, 340 (ex. 7.2)

annotate-expr, 196

Annotation layer, 304

any-arg, 76

any-object?, 91

APL, 87 n

Applicability of procedure, 73, 76, 78, 88, 98

application?, 236

Application of procedures, 235, 244–246

Applicative order, 234, 245

apply, 23, 375

in evaluator, 234 (see also a:apply; g:apply; x:apply)

with “extra” argument, 85 (ex. 3.2)



Architecture

parti , 5, 299

of programs, 5–6

Arguments

indefinite number of (see n-ary procedure)

in Scheme, 250, 380

non-strict, 250

strict, 251

Arithmetic. See also Arithmetic package; Combinators: arithmetic
combinators

boolean, 84 (ex. 3.1)

on functions, 80–83

generic (see Generic arithmetic) layered, 309–310

symbolic, 71–73

with units, 310–314

on vectors, 85 (ex. 3.2)

Arithmetic operators modulating, 71–73

Arithmetic package, 71

combining arithmetics, 73–80

Arity. See also n-ary procedure

of function, 23, 27

of operator, 74

procedure-arity, 28

Armstrong, Edwin, 10 (fig. 1.1)

Aspect-oriented programming, 88 n

assert! in propagator, 336, 349



assert in Scheme, 28

Assignment

! naming convention, 393 n

backtracking and, 276

in evaluator, 243

in Scheme, 392–394

set!, 393

assignment?, 243

assignment-value, 243

assignment-variable, 243

Association list (alist), 303

Astronomy

distances to stars, 329

magnitudes of stars, 336

attach-rule!, 168, 170

Automagically, 10

Automatic differentiation, 103

generic arithmetic handlers for, 107–110

higher-order functions, 119

literal functions, 123

n-ary functions, 111

Newton's method using, 104

Autonomous agent in game, 139, 140, 144

Avatar in game, 139

Backquote in Scheme, 391



Backtracking, 269–271. See also Exploratory behavior; Generate and
test; Search

amb (see amb)

assignment and, 276

continuations and, 287, 288–289

dependency-directed (see Dependency-directed backtracking)

generate and test, 16

language and, 270–271

rules and, 162, 164

segment variables and, 172

Ballantyne, Michael, 203 n

Bard, Jonathan B. L., 16 n

base-layer, 303

base-layer-value, 305

basic-knight-move, 213

basic-queen-move, 215

Beal, Jacob, 8 n

begin?, 242

begin, in evaluator and Scheme, 242

begin-actions, 242

Belief status of premise, 349

Ben Bitdiddle, 44 (ex. 2.7), 277 (ex. 5.17)

Bessel, Friedrich Wilhelm, 332

binary-amb, 360

Binary amb, 359–363

Binding, 381 n



of formal parameters, 234, 246

of pattern variables, 170, 172, 175

Biology, ideas from, 8–17

board-addresses, 217

Board game domain model, 53

checkers, 54–55, 59

Body

of let expression, 385

of procedure, 234, 381

Body plan, 9–12

animal, 9

combinators and, 11, 36

domain-specific language, 11

radio receiver, 10

software, 11

Bohlin, R.C., 337

boolean?, 84 (ex. 3.1)

Boolean arithmetic, 84 (ex. 3.1)

Boolean values, 386

Bourne shell, 42

BRE (Basic Regular Expression), 38

Breadth-first search, 290–292

Brittle software, 1

Bundle, 395–397

bundle, 396

Byrd, Will, 203 n



C, 65, 238

C++ and overloading, 154

c:, 331 (fig. 7.3)

cache-wrapped-dispatch-store, 132

Caching, for generic dispatch, 131

call-with-current-continuation, 282

call-with-values, 31 n

call/cc, 282

Call by need, 245, 251

capture?, 223

car, 387

Carroll, Lewis, 285 n

cdr, 387

Cell (propagation), 342, 343–346

cell-merge, 344

cell-strongest, 346

chaining-generic-procedure, 138

Chapman, David, 358 n

Checkers, 53–64

domain model, 54–55, 59

Chen, Kenny, 203 n

Chess, 64 (ex. 2.12), 213–224

board as graph, 216

compiling move patterns to matcher procedures, 225–231

knight move patterns, 213, 214

making moves, 221



move patterns on board graph, 213

queen move patterns, 215

Choice, nondeterministic. See amb

Choice propagator, 356–364. See also binary-amb; p:amb

Church, Alonzo, 1 n, 380 n

Circuit, electrical, 340 (ex. 7.2)

Clausal learning, 358 n

Clause in conditional, 383

Clifford, William Klingdon, 106 n

Clinger, William, 277 n

CLOS, 88 n

Code smell, 6 n

Colmerauer, Alain, 271, 370 n

color, 218

Combination in Scheme, 235, 380. See also Procedure: application of

Combinatorial puzzles, 277 (ex. 5.17), 364–367

Combinator language, 11, 30

Combinators, 11, 22–36

arithmetic combinators, 67–84

body plans and, 11, 36

function combinators, 23–29 (see also Function combinators)

for pattern matching, 170, 175

problems with, 83, 88

for regular expressions, 38–43

system of, 21, 22

combined-arithmetic, 79



Combining arithmetics, 73–80

Comma in backquote, 391

Common Lisp Object System, 88 n

Compiler optimization, 160, 259, 269 (ex. 5.15)

assignment and, 264

constant folding, 268 (ex. 5.14)

peephole, 168

Compile time, 259

Compiling, 259

for graph patterns, 225–231

formal-parameter declarations, 269 (ex. 5.16)

for pattern matching, 176–179

to execution procedures, 259–267, 273–277 (see also analyze-...)

to propagator networks, 337 n, 340 (ex. 7.1), 367 (ex. 7.6)

to regular expressions, 39–43

complement, 203 n, 309 n

compose, 23 , 24 (fig. 2.1), 32 , 382

compound-propagator, 347

Compound data in Scheme, 386–389
cond

in evaluator, 241

in Scheme, 383

cond?, 241

cond-clause-consequent, 241

cond-clause-predicate, 241

cond-clauses, 241



cond->if, 241

Conditionals

in evaluator, 238

in Scheme, 383–384

conjoin, 309 n

connect!, 212

connect-up-square, 219

cons, 387

g:cons (graph version), 210

Consequent in conditional, 383, 384

Consequent of rule, 161

constant-union, 77

Constant folding, 268 (ex. 5.14)

Constraint propagator (c:), 330, 331 (fig. 7.3)

Constructors in Scheme, 386

Continuation-passing style, 280–281

for amb, 273

in matcher, 170

in rule system, 164

in unifier, 186

Continuations in Scheme, 280–287

backtracking and, 287, 288–289

call/cc, 282

call-with-current-continuation, 282

nonlocal exits, 284–285

nonlocal transfer of control, 285–287



underlying, 281–287

Contradiction object for

propagation, 345

Correctness vs. flexibility, 18

Curry, Haskell, 34

curry-argument, 34 , 34 (fig. 2.6)

Currying, 34

for multiple arguments, 138 n

partial derivatives and, 113 (ex.

3.8)

Cy D. Fect, 277 (ex. 5.17)

Data

layered, 302–305

restrictions on use of, 324

tagged, 134, 155

Data-purpose algebra, 325

Debugging, 24 n, 260, 268 (ex. 5.13). See also Paranoid programming

dependencies for, 315, 322, 329

numerical code, 71, 96, 100

Declarations

compiling, 269 (ex. 5.16)

constants, 268 (ex. 5.14)

on formal parameters, 233, 250

inferred type, 195

layering for, 6, 299, 321 (ex. 6.4)



lazy and lazy memo formal parameters, 253

optional parameter, 258 (ex. 5.11)

record type, 388

relationships between predicates, 135, 155

rest parameter, 258 (ex. 5.11)

restrictions on formal parameters, 257 (ex. 5.10)

restrictions on pattern variables, 163

default-object, 75 n

default-object?, 75 n
define

’.’ for rest parameters, 267 (ex. 5.12), 389

in evaluator, 244

in Scheme, 381

define-c:prop, 348

define-clock-handler, 145

define-generic-procedure-handler, 89, 99

define-layered-procedure-handler, 353

definition?, 244

definition-value, 244

definition-variable, 244

Definitions in Scheme, 381–383. See also Internal definitions in
Scheme

Degeneracy, 4, 12–14

in biological systems, 12

in engineered systems, 14

evolution and, 13



of genetic code, 12

partial information and, 14

physics and, 13

propagation and, 369

redundancy vs., 12 n

deKleer, Johan, 358 n

delay, 211

Delegate procedure in bundle, 396

Delegation, 128

del Pino, E. M., 16 n

Dependency-directed

backtracking, 315, 324, 358–364, 370. See also amb: propagation
implementation combinatorial puzzles, 364–367

Depth-first search, 277, 290–292

derivative, 107

Derived expression types, 240–242

Diamond, ball of mud vs., 87

Dictionary, 166, 170, 175

Differential equations, integrating, 68–70, 256 (ex. 5.8)

Differential object, 105

Differentiation, automatic. See Automatic differentiation

Direction

on checkerboard, 55

on chessboard, 213

Directional propagator (p:), 331, 332 (fig. 7.4)

discard-argument, 33 , 33 (fig.



2.5)

disjoin*, 77 n

Dispatch. See Generic dispatch; Pattern-directed invocation

Dispatch key, 131, 136

Dispatch store, 90, 98, 125, 128, 131, 136–138

Distances to stars, 329

Domain model for board game, 53

checkers, 54–55, 59

Domain predicate, 74

Dotted-tail notation, 389

Doyle, Jon, 358 n

Driver loop (read-eval-print loop), 246

Dual numbers, 106 n

Dynamic binding in Scheme, 394–395

e, as integral, 257 (ex. 5.8)

Edge, of graph, 209, 211

edge-value, 212

Effects. See also Assignment

in evaluator, 242–243

in Scheme, 392–394

Efficiency vs. flexibility, 17

Electrical circuit, 340 (ex. 7.2)

Element variable, 171

Elinson, R. P., 16 n

else in cond, 383

else-clause?, 241



Emacs, 1 n

Empty list, 387

Engineering

degeneracy and, 14

half-full glass, 18

redundancy and, 14

Environment, in evaluation, 234, 245

lexical scoping, 239, 246

procedure application, 234

Environment, in pattern matching. See Dictionary

eq?, 390

ERE (Extended Regular Expression), 38, 46 (ex. 2.10)

Ernst, M. D., 88 n

eval, 234, 375. See also g:eval; x:eval

Evaluation of expressions, 235–244

lambda expressions, 239

applications, 235

assignments, 243

conditionals, 238

definitions, 243

derived expressions, 240–242

quotations, 237

self-evaluating expressions, 236

sequences, 242

variables, 238

Eva Lu Ator, 44 (ex. 2.7), 277 (ex. 5.17), 294 (ex. 5.23)



Evaluator, 12. See also Evaluation of expressions; Interpreter

evolver, 70

Exclamation point in name, 393 n

execute-strict, 275

Exploratory behavior, 14–17, 269–271. See also Backtracking;
Generate and test; Search

Expressions in Scheme, 379

extend-arithmetic, 78

extend-generic-arithmetic!, 93

extract-dx-part, 110

factorial, 384 , 385

pattern-directed, 168

Fibonacci numbers, 129, 255

finite-part, 118

Finite part of differential object, 106

First-class object, 282, 382

Flexibility

additivity, 2

body plan, 9

brittleness vs., 1

combinators (see Combinators)

combinators vs., 83

correctness vs., 18

degeneracy, 4, 12, 370, 371

diamond vs. ball of mud, 87

efficiency vs., 17



exploratory behavior, 14, 329

generic procedures, 67

layered system, 4, 299, 356

mix-and-match parts, 3, 22, 170, 232

pattern-directed invocation (see Pattern-directed invocation)

Postel's law, 3, 19 n

program architecture, 5

propagator network, 328

redundancy, 12, 371

rule system, 157

flip-coin, 144

Floyd, Bob, 271

Fluid variable. See Parameter

Forbus, Ken, 358 n

force, 211

Formal parameters of procedure, 234, 381

declarations, 233, 250

lazy and lazy memo declarations, 253

lazy arguments, 251

optional argument, 118, 258

(ex. 5.11)

rest arguments, 248 n, 258 (ex. 5.11), 267 (ex. 5.12), 389–390

restriction declarations, 257 (ex. 5.10)

Franklin, Benjamin, 183

Fredkin, Edward, 125 n

Freuder, Eugene, 332 n



Friedman, Daniel P., 254 n

Fully supported, 349

function-extender, 82

Functional programming, 394 n

Function arithmetic, 80–83

Function combinators, 23–29

compose, 23

curry-argument, 34

discard-argument, 33

parallel-combine, 25

permute-arguments, 35

spread-combine, 26

g:, 236 n

g:advance, 236

handlers, 254

g:apply, 245

handlers, 245–246

g:eval, 235

handlers, 235–244

Scheme primitives and, 238 n

g:handle-operand, 252

Games. See Adventure game; Checkers; Chess Gatewood, George D.,
334 n

Generate and test, 14–17, 288, 292. See also Backtracking;
Exploratory behavior; Search

backtracking, 16



in biology, 14

in evolution, 16

generic-move!, 146

generic-procedure-constructor, 90, 97

generic-procedure-dispatch, 100 , 125

generic-symbolic, 309

generic-with-layers, 309

Generic arithmetic, 90–96

automatic differentiation handlers, 107–110

problems with, 94

Generic dispatch, 4, 99. See also Dispatch store

caching for, 131

chaining handlers, 137

most specific handler, 136

pattern matching vs., 157

resolution policy, 98, 130, 136

rules for, 88

trie data structure for, 125–130

Generic procedures extensible, 87–101

flexibility, 67

implementation, 97–100

object-oriented programming and, 4, 88 n, 138–152

Gerhart, John C., 9 n, 14 n

get-arity, 28

get-handler, 98

get-hunger, 143



Gilliland, R.L., 337

giuoco-piano-opening, 223

gmatch:compile-path, 226

gmatch:compile-target, 228

gmatch:compile-var, 230

Gödel, Kurt, 1 n

Golden ratio, 256

Gossip propagation, 354 (ex. 7.4)

Graph

alternate views, 216

chessboard as, 216

implementation of, 211–212

lazy, 211

list as, 210

pattern matching on, 209–231

propagation and, 342 (ex. 7.3)

graph-match, 225

graph-node-view, 216

Graph edge, 209, 211

Graph node, 209, 211

grep, 42

guarantee, 151 n

guarantee-list-of, 151 n

handle-cell-contradiction, 363

handle-operand. See g:handle-operand; x:handle-operand

Handler



applicability of, 73, 98

choosing efficiently, 125

for arithmetic operation, 71

for generic procedure, 88

for layered procedure, 306

term-rewriting rule consequent, 165

has-edge?, 212

Hash table, 29 n

for memoization, 132

for sticky note, 29, 254

Haskell, 22 n, 251

currying, 138 n

overloading, 154

type system, xvi Herbrand, Jacques, 1 n

Hewitt, Carl E., 170 n, 271, 370 n

Hewitt, Edwin, 106 n

Hipparchus, 336 n

Hipparcos satellite, 335, 335 n, 336 n

Hox complex (genes), 9

Hubble space telescope, 337

Hygienic macro, 167, 240 n

Hyperreal numbers, 106 n

Hypothetical premise, 356, 359–364

IDE (Integrated Development Environment), 321 (ex. 6.4)
if



in evaluator, 239

in Scheme, 384

if?, 239

if-alternative, 239

if-consequent, 239

if-predicate, 239

Improper list, 248 n

in (believed), 349

Indentation in Scheme, 382 n

Index

of this book, 409

trie, 125

zero-based, 388

infer-program-types, 194, 196

infinitesimal-part, 118

Infinitesimal part of differential object, 106

Infix notation, 250 (ex. 5.7)

Inheritance

delegation vs., 128

object-oriented programming, 140

inquire in propagator, 334

install-arithmetic!, 72

Integrated Development Environment (IDE), 321 (ex. 6.4)

Integrating differential equations, 68–70, 256 (ex. 5.8)

Internal definitions in Scheme, 24, 383, 385

Interpreter, 233–254



Intervals

in measurements, 332–336

merging, 352

invert-address, 219

iota, 112 n

Iteration in Scheme, 385

Java, 1 n, 6, 22 n

chaining, 146

combinators, 65

interfaces, 6 n

Jonge, Joost Kiewiet de, 334 n

Justification, annotation of, 322

Kahn, Louis Isadore, 5

Kanizsa, Gaetano, 328

Kanizsa's triangle illusion, 328, 328 (fig. 7.1)

Kirschner, Marc W., 9 n, 14 n

Knuth, Donald E., 409

Kowalski, Robert M., 271

Kutsia, Temur, 203 n

lambda

’.’ or symbol for rest parameters, 248 n, 267 (ex. 5.12), 389

in evaluator, 239

in Scheme, 380

lambda (λ) calculus, 1 n



lambda?, 239

lambda-body, 239

lambda-parameters, 239

layer-accessor, 305

layered-datum, 303

layered-extender, 310

Layered arithmetic, 309–310

Layered data, 302–305

Layered procedure, 301, 305–309, 352

Layering, 4, 299. See also Architecture: of programs

declarations, 299, 321 (ex. 6.4)

program architecture, 5
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let?, 242

let*, 385

let-body, 242
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Lexical scoping, 239, 245, 246, 382

Lieberherr, Karl, 358 n

Lisp, xvi, 235, 387 n
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list, 386

list?, 386

list->graph, 211

list->lazy-graph, 211

list-ref, 388

list-set!, 393

Lists

as graphs, 210

improper, 248 n

in pattern matching, 158

in Scheme, 386–389, 393

lazy (streams), 211, 254–256, 256 (ex. 5.8)

printing, 72 n



literal-function, 83
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make-cached-most-specific-dispatch-store, 138
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make-chaining-dispatch-store, 137
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make-parameter, 395
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map, 249 (ex. 5.5)
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match:bindings, 175

match:compile-pattern, 179

match:dict-substitution, 186
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match:element-var?, 178

match:eqv, 171

match:extend-dict, 176

match:list, 174



match:lookup, 176

match:new-dict, 175

match:segment, 173

match:segment-var?, 178

match:var?, 178

Matcher. See Match procedure Match procedure, 166, 170

Matrix arithmetic, 102 (ex. 3.6), 103 (ex. 3.7)

Maximal factor, 117

maybe-grab-segment, 205

maybe-set!, 276, 295 (ex. 5.25)

maybe-substitute, 191

Mayer, Meinhard E., 114 n

McAllester, David, 358 n

McCarthy, John, 271, 277 n

MDL, 249 (ex. 5.6)

Memoization

hash table for, 132

lazy evaluation and, 251 n

merge, 351

merge-intervals, 352

merge-value-sets, 353

Message-accepting procedure, 396

Metaobject Protocol, 88 n

Method. See Handler; Message-accepting procedure

MIT/GNU Scheme, 379

Mitros, Piotr, 11 n



Mix-and-match parts, 3, 7 n, 22. See also Combinators
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most-specific-generic-procedure, 138

Mud, ball of, 87

Multiple values in Scheme, 30–32

n:, 69 n

Naming conventions

! for assignment, 393 n

? for predicate, 386 n

%, 152

narrate!, 144

n-ary procedure (indefinite number of arguments), 29, 72 n, 248 (ex.
5.2), 258 (ex. 5.11), 267 (ex. 5.12), 389–390
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Nested definition in Scheme. See Internal definitions in Scheme

.net, 1 n

Newton's method, 104

next-turn, 219

Node, of graph, 209, 211
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Nogood set, 358

Nondeterministic choice. See amb

Non-strict argument, 250. See also Postponed evaluation

Non-strict procedure, 250

Normal order, 236, 245
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null?, 387
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Numbers in Scheme, 237

Numeral, 379. See also Rational constant
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modeling with, 138
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Operator of combination, 234, 380
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Parameter (of procedure). See Formal parameters of procedure
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Parametric types, 202 (ex. 4.15)

Paranoid programming, 28, 65, 321 (ex. 6.3)
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propagation, 344

type inference, 193–201

unification, 183, 185
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rules and, 157, 160

Pattern-directed invocation, 158, 168–170, 370 n



- (negation or subtraction), 168

factorial, 168

Pattern matching, 157. See also Pattern-directed invocation;
Unification
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generic dispatch vs., 157

on graphs, 209–231

on lists, 158

term rewriting, 160–167

Pattern variable, 157, 158. See also Segment variable
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restrictions, 163

Perlis, Alan J., 17, 150, 159

Perlmutter, Barak A., 121 n

permute-arguments, 35 (fig. 2.7), 36

Perturbational programming, 323
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Postponed evaluation, 236. See also delay; force; Stream
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non-strict arguments, 253–254, 266

pp (pretty-print), 72 n
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? naming convention, 386 n
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Printing list structure, 72 n
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layered, 301, 305–309, 352
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n-ary (see n-ary procedure)
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strict, 245, 250

variadic (see n-ary procedure)

with indefinite number of arguments (see n-ary procedure)

procedure-parameter-name, 252

program-constraints, 199
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additive, 1–5

architecture of, 5–6

layered, 299
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Propagation

activation policy, 347

alternative world views, 349–351

amb, 355–364
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cell, 342, 343–346
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degeneracy and, 369
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mechanism, 342–349

merging values, 351–354

model of computation, 327–329

neighbor, 342

partial information, 344

propagator, 342, 346–349 (see also Propagator)

scheduler, 342, 343

searching alternatives, 355–364
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unification and, 354 (ex. 7.4)

wiring diagram vs. expression, 327, 331 (fig. 7.3), 337 n, 340 (ex.
7.1), 367 (ex. 7.6), 369

Propagator, 342, 346–349



choice propagator (see Choice propagator)
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Puzzles (combinatorial), 277 (ex. 5.17), 364–367
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Radul, Alexey Andreyevich, 121 n, 344 n, 358 n, 370

random-bias, 143

random-choice, 143
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Randomness. See flip-coin; random-...
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Recursive procedures, 384
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Redundancy, 12–14, 130
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in engineered systems, 14
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Referee for game, 53, 210

Registration of predicate, 133

Regular expressions, 37–38

combinator implementation, 38–43

Relationships between predicates, 135, 155

repl, 246

require, 272, 292

Resolution policy for generic dispatch, 98, 130, 136

Rest parameter, 248 n, 267 (ex. 5.12), 390
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restrict-arity, 28
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on formal parameters, 257 (ex. 5.10)
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Ruby and continuations, 282
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rule-simplifier, 161, 165
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algebra, 161–163

backtracking and, 162, 164

for generic procedure dispatch, 88

patterns and, 157, 160

Run time, 259

Russell, Jane L., 334

Sandewall, Erik, 271 n

Satellite, Hipparcos, 335, 335 n, 336 n

SAT solver, 358 n, 368
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Scheduler for propagation, 342, 343

Scheme, xvi, 244, 379–395

MIT/GNU Scheme, 379

Schönfinkel, Moses, 34 n
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Scope, 381 n. See also Lexical scoping

Search, 355–356. See also amb; Backtracking; Exploratory behavior;
Generate and test

depth-first and breadth-first, 277, 290–292

Segment variable, 159. See also Pattern variable

in algebra rules, 162

backtracking and, 172

unification and, 203–208

Selectors in Scheme, 386

self-evaluating?, 237

Semicolon (;). See also Syntactic sugar

comment introduced by, 390

Sensitivity analysis, 323

sequence->begin, 240
set!

in evaluator, 243

in Scheme, 393

set-car!, 393

set-cdr!, 393

set-piece-at, 221

set-predicate<=!, 136

setup-propagator-system, 366

SI (International System of Units), 314 (ex. 6.1)

SICP, 379

inhabitants, 44 (ex. 2.7), 277 (ex. 5.17), 294 (ex. 5.23)



simple-abstract-predicate, 134

simple-generic-procedure, 89, 89 , 97

simple-move, 222

simple-operation, 74
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Siskind, Jeffrey Mark, 121 n
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continuations, 282

currying, 138 n

message passing, 396 n

Smith, Brian Cantwell, 237 n

SML and continuations, 282

Snark hunt, 285 (ex. 5.21)

Software support for book, 377

SOS, 88 n

Special form, 235, 380

implemented by macro, 264
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spread-apply, 32

spread-combine, 27 (fig. 2.3), 28 , 31 , 31 (fig. 2.4)

square, 381

Stallman, Richard Matthew, 332 n, 358 n

Standards, 46 (ex. 2.10)
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distances to, 329

magnitudes of, 336



start-chess-game, 220

Steele, Guy Lewis Jr., 30 n, 332 n, 358 n

Sticky note

hash table for, 29, 254

for metadata, 169

stormer-2, 69

Stormer's integrator, 68

Stream (lazy list), 211, 254–256

integration using, 256 (ex. 5.8)

Strict argument, 251

Strict procedure, 245, 250

strongest-consequence, 351

strongest-value, 350

Struve, Friedrich G. W. von, 332

Suppes, Patrick, 322 n

support-layer, 318

support-layer-value, 318

support-set abstraction (...support-set...), 319

Support for datum, 316

Support layer, 317

Support set, 315

Sussman, Gerald Jay, 106 n, 114 n, 332 n, 358 n, 370

Symbol, in Scheme, 238 n, 390–391

symbolic-extender, 76

Symbolic arithmetic, 71–73

symmetrize-move, 214



Syntactic sugar, 159, 315 (ex. 6.1)

define as, 382

derived expression types, 240–242

Syntax. See Combination; Macro; Special form; Syntactic

sugar

Tag, for predicate, 131, 133, 136

tagged-list?, 238

Tagged data, 134, 155

take-thing, 147

Tannenbaum, Andrew S., 46 (ex. 2.10)

tell! in adventure game, 147

tell! in propagator, 333

Term rewriting, 160–167

for algebraic simplification, 161–163

for compiler optimization, 160, 168

equational theories, 160

pattern matching, 160–167
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text-of-quotation, 237
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Troll, 139, 142–144
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Turing, Alan, 1 n

Turn in chess
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inferred declaration, 195
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unifier, 186

unify, 186

unify-constraints, 200

unify:internal, 187

Union types, 202 (ex. 4.16)
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